50 resultados para Polymer Electrolyte Membrane Electrochemical Reactor
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.
Resumo:
The present work reports a comparative study on the performances of two bis[(trifluoromethyl)sulfonyl]imide-based protic (PIL) and aprotic (AIL) ionic liquids, namely, trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide ([HN][TFSI], PIL) and trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide ([S][TFSI], AIL), as mixtures with three molecular solvents: gamma butyrolactone (?-BL), propylene carbonate (PC), and acetonitrile (ACN) as electrolytes for supercapacitor applications. After an analysis of their transport properties as a function of temperature, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements were conducted at 25 and -30 C to investigate the performance of these mixtures as electrolytes for supercapacitors using activated carbon as the electrode material. Surprisingly, for each solvent investigated, no significant differences were observed between the electrolytes based on the PIL and AIL in their electrochemical performance due to the presence or the absence of the labile proton. Furthermore, good specific capacitances were observed in the case of ?-BL-based electrolytes even at low temperature. Capacitances up to 131 and 80 F·g are observed for the case of the [S][TFSI] + ?-BL mixture at 25 and -30 C, respectively. This latter result is very promising particularly for the formulation of new environmentally friendly electrolytes within energy storage systems even at low temperatures. © 2013 American Chemical Society.
Resumo:
The oxidation of trimethoxymethane (TMM) (trimethyl orthoformate) in a direct oxidation PBI fuel cell was examined by on-line mass spectroscopy and on-line FTIR spectroscopy. The results show that TMM was almost completely hydrolyzed in a direct oxidation fuel cell which employs an acid doped polymer electrolyte to form a mixture of methylformate, methanol and formic acid. It also found that TMM was hydrolyzed in the presence of water at 120°C even without acidic catalyst. The anode performance improves in the sequence of methanol, TMM, formic acid/methanol, and methylformate solutions. Since formic acid is electrochemically more active than methanol, these results suggest that formic acid is probably a key factor for the improvement of the anode performance by using TMM instead of methanol under these conditions. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.
Resumo:
Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.
Resumo:
A solid-state electrochemical reactor with ceramic proton-conducting membrane has been used to study the effect of electrochemically induced hydrogen spillover on the catalytic activity of platinum during ethylene oxidation. Suitable proton-conducting electrolyte membranes (Gd-doped BaPrO 3 (BPG) and Y-doped BaZrO3 (BZY)) were fabricated. These materials were chosen because of their protonic conductivity in the operational temperature region of the reaction (400-700 °C). The BZY-based electrochemical cell was used to investigate the open-circuit voltage (OCV) dependence on H2 partial pressure with comparison being made to the theoretical OCV as predicted by the Nernst equation. Furthermore, the BZY pellets were used to study the effect of proton transfer of the catalytic activity of platinum during ethylene oxidation. The reaction was found to exhibit electrochemical promotion at 400 °C and to be electrophilic in nature, i.e. proton addition to the platinum surface resulted in an increase in reaction rate. At higher temperatures, the rate was not affected, within experimental error, by proton addition or removal. Under similar conditions, AC impedance showed that there was a large overall cell resistance at 400 °C with significantly decreased resistance at higher temperatures. It is possible that there could be a relationship between large cell resistances and the onset of electrochemical promotion in this system but there is, as yet, no conclusive evidence for this. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
The oxygen reduction reaction (ORR) activity of Pt/C catalysts was investigated in electrolytes of 0.5 mol/L H2SO4 containing varying concentrations of methanol in a half-cell. It was found that the ORR activity was improved notably in an electrolyte of 0.5 mol/L H2SO4 containing 0.1 mol/L CH3OH as compared with that in 0.5 mol/L H2SO4, 0.5 mol/L H2SO4 containing 0.5 mol/L CH3OH, or 0.5 mol/L H2SO4 containing 1.0 mol/L CH3OH electrolytes. The same tendency for improved ORR activity was also apparent after commercial Nafion (R) NRE-212 membrane was hot-pressed onto the catalyst layers. The linear sweep voltammetry results indicate that the ORR activities of the Pt/C catalyst were almost identical in the 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH solution before and after coated with the Nafion (R) membrane. Electrochemical impedance spectroscopy results demonstrated that the resistance of the Nafion (R) membrane is smaller in the electrolyte of 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH than in other electrolytes with oxygen gas feed. This exceptional property of the Nafion (R) membrane is worth investigating and can be applied in fuel cell stacks to improve the system performance. (c) 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
Herein, the N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide and the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide room temperature ionic liquids, combined with the lithium bis(trifluoromethanesulfonyl)amide salt, are investigated as electrolytes for Li/LiNi1/3Mn1/3Co1/3O2 (Li/NMC) batteries. To conduct this study, volumetric properties, ionic conductivity and viscosity of the pure ionic liquids and selected electrolytes were firstly determined as a function of temperature and composition in solution. These data were then compared with those measured in the case of the standard alkyl carbonate-based electrolyte: e.g. the EC/PC/3DMC + 1 mol·L−1 LiPF6. The compatibility of the selected electrolytes with the lithium electrode was then investigated by following the evolution of Li/electrolyte interfaces through impedance measurements. Interestingly, the impedances of the investigated Li/electrolyte interfaces were found to be more than three times lower than that measured using the standard electrolyte. Finally, electrochemical performances of the ionic liquid-based electrolytes were investigated using galvanostatic charge and discharge and cyclic voltammetry of each Li/NMC cell. Using these electrolytes, each tested Li cell reaches up to 145 mA·h·g−1 at C/10 and 110 mA·h·g−1 at C with a coulombic efficiency close to 100 %.
Resumo:
A dual chamber membrane reactor was used in order to study the effect of macroscopically applied oxygen chemical potential differences to a platinum catalyst supported on a mixed oxygen ion and electronic conducting membrane. It is believed that the oxygen chemical potential difference imposed by the use of an oxygen sweep in one of the reactor chambers causes the back-spillover of oxygen species from the support onto the catalyst surface, resulting in the modification of the catalytic activity. The use of different sweep gases, such as ethylene and hydrogen was investigated as the means to reverse the rate modification by removing the spilt over species from the catalyst surface and returning the system to its initial state. Oxygen sweep in general had a positive effect on the reaction rate with rate increases up to 20% measured. Experimental results showed that hydrogen is a more potent sweep gas than ethylene in terms of the ability to reverse rate modification. A 10% rate loss was observed when using an ethylene sweep as compared with an almost 60% rate decrease when hydrogen was used as the sweep gas. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.
Resumo:
Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.
Resumo:
Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.