7 resultados para Poison Pills

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease–associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIA poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H2S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H2S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H2S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed. (C) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Okadaic acid, a diarrhetic shellfish poison, domoic acid, an amnesic shellfish poison, and saxitoxin, a paralytic shellfish poison, are three of the best-known marine biotoxins. The mouse bioassay is the method most widely used to detect many of these toxins in shellfish samples, but animal welfare concerns have prompted researchers to seek alternative methods of detection. In this study, three direct competitive enzyme-linked immunosorbent assays (ELISAs), each based on antibodies raised in rabbits against a conjugate of the analyte of interest, were developed for marine biotoxin detection in mussel, oyster, and scallop. One assay was for okadaic acid, one for saxitoxin, and one for domoic acid usually detected and quantified by high-performance liquid chromatography-ultraviolet light (HPLC-UV). All three compounds and a number of related toxins were extracted quickly and simply from the shellfish matrices with a 9 : 1 mixture of ethanol and water before analysis. The detection capabilities (CC values) of the developed ELISAs were 150 mu g kg-1 for okadaic acid, 50 mu g kg-1 for domoic acid, and 5 mu g kg-1 or less for saxitoxin. The assays proved satisfactory when used over a 4-month period for the analysis of 110 real samples collected in Belgium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemically modified ethylene oxidation over a PI film supported on the Na+ ion conductor beta '' alumina has been studied over a range of conditions encompassing both promotion and poisoning, The system exhibits reversible behavior, and the data are interpreted in terms of (i) Na-enhanced oxygen chemisorption and (ii) poisoning of the surface by accumulation of Na compounds. At low Na coverages the first effect results in increased competitive adsorption of oxygen at the expense of ethylene, resulting in an increased rate, At very negative catalyst potentials (high Na coverage) both effects operate to poison the system: the increased strength of the Pt-O bond and coverage of the catalytic surface by compounds of Na strongly suppress the rate, Kinetic and spectroscopic results for ethylene oxidation over a Pt(111)-Na model catalyst shed light on important aspects of the electrochemically controlled system, Low levels of Na promote the reaction and high levels poison it, mirroring the behavior observed under electrochemical control and strongly suggesting that sodium pumped from the solid electrolyte is the key species, XP and Auger spectra show that under reaction conditions, the sodium exists as a surface carbonate. Post-reaction TPD spectra and the use of (CO)-C-13 demonstrate that CO is formed as a stable reaction intermediate, The observed activation energy (56 +/- 3 kJ/mol) is similar to that measured for CO oxidation under comparable conditions, suggesting that the rate limiting step is CO oxidation. (C) 1996 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On 25 April 1998 part of the tailings pond dike of the Aznalcollar Zn mine north of the Guadalquivir marshes (Donana) in southern Spain collapsed releasing an estimated 5 million m3 of acidic metal-rich waste. This event contaminated farmland and wetland up to >40 km downstream, including the 900-ha 'Entremuros', an important area for birds within the Donana world heritage site. In spite of the contamination, birds continued to feed in this area. Samples of two abundant macrophytes (Typha dominguensis and Scirpus maritimus) were taken from the Entremuros and nearby uncontaminated areas; these plants are important food items for several bird species. Analyses showed that in the Entremuros mean plant tissue concentrations of Cd were 3-40-fold (0.8-7.4 ppm) and Zn 20-100-fold (20-3384 ppm) greater than those from control areas. Comparable dietary concentrations of Zn have been reported to cause severe physiological damage to aquatic birds under experimental conditions. Elevated Cd concentrations are of concern as Cd bioconcentrates and is a cumulative poison. Metals released in this accident are moving into this food-chain and present a considerable risk to species feeding on Typha sp. and Scirpus sp. Many other food-webs exist in this area and require detailed examination to identify the species at risk, and to facilitate the management of these risks to minimise future impacts to the wildlife of Donana. Copyright (C) 1999 Elsevier Science Ltd.