302 resultados para Pleural Neoplasms

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Habitual consumption of diets with a high glycemic index (GI) and a high glycemic load (GL) may influence cancer risk via hyperinsulinemia and the insulin-like growth factor axis.
Objective: The objective was to conduct a systematic review to assess the association between GI, GL, and risk of digestive tract cancers.
Design: Medline and Embase were searched for relevant publications from inception to July 2008. When possible, adjusted results from a comparison of cancer risk of the highest compared with the lowest category of GI and GL intake were combined by using random-effects meta-analyses.
Results: Cohort and case-control studies that examined the risk between GI or GL intake and colorectal cancer (n = 12) and adenomas (n = 2), pancreatic cancer (n = 6), gastric cancer (n = 2), and squamous-cell esophageal carcinoma (n = 1) were retrieved. Most case-control studies observed positive associations between GI and GL intake and these cancers. However, pooled cohort study results showed no associations between colorectal cancer risk and GI intake [relative risk (RR): 1.04; 95% CI: 0.92, 1.12; n = 7 studies] or GL intake (RR: 1.06; 95% CI: 0.95, 1.17; n = 8 studies). Furthermore, no significant associations were observed in meta-analyses of cohort study results of colorectal cancer subsites and GI and GL intake. Similarly, no significant associations emerged between pancreatic cancer risk and GI intake (RR: 0.99; 95% CI: 0.83, 1.19; n = 5 studies) or GL intake (RR: 1.01; 95% CI: 0.86, 1.19; n = 6 studies) in combined cohort studies.
Conclusions: The findings from our meta-analyses indicate that GI and GL intakes are not associated with risk of colorectal or pancreatic cancers. There were insufficient data available regarding other digestive tract cancers to make any conclusions about GI or GL intake and risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) pleural disease is complicated by extensive tissue destruction. Matrix metalloproteinase (MMP)-1 and -9 are implicated in immunopathology of pulmonary and central nervous system TB. There are few data on MMP activity in TB pleurisy. The present study investigated MMP-1, -2 and -9 and their specific inhibitors (tissue inhibitor of metalloproteinase (TIMP)-1 and -2) in tuberculous effusions, and correlated these with clinical and histopathological features. Clinical data, routine blood tests, and pleural fluid/biopsy material were obtained from 89 patients presenting with pleural effusions in a TB-endemic area. MMP-1, -2 and -9 were measured by zymography or western blot, and TIMP-1 and -2 by ELISA. Pleural biopsies were examined microscopically, cultured for acid–alcohol fast bacilli and immunostained for MMP-9. Tuberculous pleural effusions contained the highest concentrations of MMP-9 compared with malignant effusions or heart failure transudates. MMP-9 concentrations were highest in effusions from patients with granulomatous biopsies: median (interquartile range) 108 (61–218) pg·mL-1 versus 43 (12–83) pg·mL-1 in those with nongranulomatous pleural biopsies. MMP-1 and -2 were not upregulated in tuberculous pleural fluid. The ratio of MMP-9:TIMP-1 was significantly higher in TB effusions. Tuberculous pleurisy is characterised by a specific pattern of matrix metalloproteinase-9 upregulation, correlating with the presence of granulomas and suggesting a specific role for matrix metalloproteinase-9 in inflammatory responses in tuberculous pleural disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.