6 resultados para Plastid DNA

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rp/16 sequence data using a conventional nucleotide substitution model (GTR + Gamma + I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because out-group rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gymnogongrus sp. (Phyllophoraceae) from Nova Scotia, Canada, identified tentatively as G. devoniensis (Greville) Schotter, grows in association with an Erythrodermis-like crust that forms chains of tetrasporangia or bisporangia. The crust resembles tetrasporophytic phases of other Gymnogongrus species, but in culture both it and the G. ?devoniensis gametophytes cycle independently by apomictic reproduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes our recent extraction of ancient DNA (aDNA) from Holocene pollen and discusses the potential of the technique for elucidating timescales of evolutionary change. We show that plastid DNA is recoverable and usable from pollen grains of Scots pine Pinus sylvestris from 10 ka and 100 years ago. Comparison of the ancient sequences with modern sequences, obtained from an extant population, establish a first genetic link between modern and fossil samples of Scots pine, providing a genetic continuity through time. One common haplotype is present in each of the three periods investigated, suggesting that it persisted near the lake throughout the postglacial. The retrieval of aDNA from pollen has major implications for palaeoecology by allowing (i) investigation of population level dynamics in time and space, and (ii) tracing ancestry of populations and developing phylogenetic trees that include extinct as well as extant taxa. The method should work over the last glacial oscillation, thus giving access to ancestry of populations over a crucial period of time for the understanding of the relationship between speciation and climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Restriction fragment length polymorphism (RFLP) analysis of chloroplast (cp) DNA is a powerful tool for the study of microevolutionary processes in land plants, yet has not previously been applied to seaweed populations. We used cpDNA-RFLP, detected on Southern blots using labeled total plastid DNA, to search for intraspecific and intrapopulational cpDNA RFLP polymorphism in two species of the common red algal genus Ceramium in Ireland and Britain. In C. botryocarpum one polymorphism was detected in one individual among 18 from two populations. Twenty-six individuals of C. virgatum from five populations at three locations exhibited a total of four haplotypes. One was frequent (80.8% of individuals); the others were rare (7.7, 7.7 and 4.2%) and were private to particular populations. Polymorphism was observed in two populations. The corrected mean was 2.26 +/- 0.36 haplotypes per population, which was within the typical range determined for higher plants using similar techniques. The spatial distribution of haplotypes was heterogeneous, with highly significant population differentiation (P = 0.00018; Fisher's exact test). Intraspecific polymorphism in C. virgatum had no impact on species-level phylogenetic reconstruction. This is the first unequivocal report of both intraspecific and intrapopulational cpDNA-RFLP polymorphism in algae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chromosome number of Gracilaria verrucosa (Hudson) Papenfuss was estimated in numerous individuals from different populations of the Cape Gris-Nez area of Northern France. To optimize estimates and to minimize counting errors, several counts were made on the same nucleus and in different nuclei of the same individual. The haploid chromosome number was estimated in vegetative gametophytic cells and tetrasporocytic cells; the diploid number was estimated from tetrasporophytic vegetative cells. The basic haploid number was n = 17 +/- 1, whereas all other Gracilaria species for which chromosome numbers are available are reported to have n = 24. These include populations of G. verrucosa from Norway and Wales that have previously been shown to be conspecific with the Cape Gris-Nez populations by comparison of plastid DNA data. G. verrucosa is therefore one of the few red algae for which populations with different chromosome numbers are known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, the majority of molecular genetic studies in algae have utilized a fairly limited range of markers such as the plastid rbcL gene and spacer, the mitochondrial cox2-3 spacer or the nuclear ribosomal DNA and spacers. The lack of available markers has been particularly problematic in studies of within-species variation. Whilst microsatellites are now being developed in many algal species, there remains a need for universal markers that can be applied to a wide range of species. The increasing availability of complete plastid genome sequences for several algae has allowed us to develop two sets of universal primers, similar to those available in higher plants, for the amplification of coding and non-coding regions of the plastid genome in red and green algae. These markers are expected to be useful in a broad range of algal population genetic and phylogenetic studies.