45 resultados para Plasma-renin Activity
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this study we compared the pharmacokinetics and pharmacodynamics of captopril after sublingual and peroral administration. Single 25 mg doses of captopril were administered sublingually and perorally on two different occasions in a randomised cross-over fashion to eight healthy volunteers aged 22-35 years. The kinetics of unchanged captopril, plasma renin activity (PRA), BP and heart rate were studied over three hours after both peroral and sublingual administration of captopril.
Resumo:
1. This study has compared the effects of ibuprofen and indomethacin upon renal haemodynamics, electrolyte excretion and renin release in the presence and absence of frusemide under sodium replete conditions in eight healthy volunteers. 2. Neither ibuprofen (400 mg and 800 mg) nor indomethacin (50 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion in the basal state. 3. Frusemide had no effect on renal blood flow, but significantly increased glomerular filtration rate. This latter change was suppressed significantly only by ibuprofen 400 mg. Frusemide-induced diuresis was inhibited by all treatments, while natriuresis following frusemide was inhibited by indomethacin only. 4. Significant increments in plasma renin activity, which were suppressed by all treatments, were observed after frusemide. The degree of inhibition of the renin responses was significantly greater in the presence of indomethacin than with either dose of ibuprofen. 5. In a sodium replete setting in healthy volunteers, indomethacin and ibuprofen had no detrimental effects on basal renal function. In the presence of frusemide, indomethacin had more anti-natriuretic and renin-suppressing effect than ibuprofen. There was no evidence for a dose-related effect of ibuprofen.
Resumo:
1. The effects of equipotent doses of frusemide (10 mg and 100 mg) and bumetanide (250 micrograms and 2.5 mg) upon renal and peripheral vascular responses, urinary prostaglandin excretion, plasma renin activity, angiotensin II and noradrenaline were compared in nine healthy volunteers. 2. Frusemide (10 mg and 100 mg) and bumetanide (2.5 mg) increased renal blood flow acutely compared with placebo but bumetanide (250 micrograms) had no effect. The changes in peripheral vascular responses were not significantly different from placebo. 3. Urinary prostaglandin metabolite excretion was acutely increased by all treatments, with no inter-treatment difference. Plasma renin activity was increased acutely by both doses of frusemide and by bumetanide (2.5 mg) compared with placebo and to bumetanide (250 micrograms). There were no differences between the latter two treatments. Angiotensin II was increased significantly 30 min after frusemide 100 mg and bumetanide 2.5 mg, and by all four treatments at 50 min when compared with placebo. There were no significant differences between either of the low doses or the higher doses. Plasma noradrenaline was unchanged by all treatments. 4. Frusemide 100 mg and bumetanide 2.5 mg have the same effects on the renal vasculature and the renin-angiotensin-prostaglandin system. Under the conditions of this study, frusemide 10 mg had different effects on plasma renin activity than bumetanide 250 micrograms.
Resumo:
The effects of increasing oral doses of caffeine (45, 90, 180 and 360 mg) on effective renal plasma flow (ERPF), plasma renin activity (PRA), serum electrolytes, plasma noradrenaline, blood pressure and heart rate were studied in eight healthy male volunteers. Urine volume was increased by 360 mg of caffeine only. At caffeine doses greater than 90 mg urinary sodium excretion was significantly increased. There were no changes in ERPF. Serum potassium was significantly reduced by 360 mg of caffeine. Caffeine increased systolic pressure in a dose related manner. Diastolic pressure was also increased, but not in relation to dose. A 360 mg dose of caffeine produced a late increase in heart rate. These changes were not associated with any alterations in PRA or in plasma noradrenaline.
Resumo:
1. Since salt depletion stimulates the renal prostaglandin system to maintain renal function, the effects of indomethacin and ibuprofen upon renal haemodynamics, electrolyte excretion and renin release were examined in eight healthy male volunteers on a salt restricted diet, before and after frusemide administration. 2. Neither indomethacin (50 mg) nor ibuprofen (400 mg and 800 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion before frusemide. 3. Renal blood flow and glomerular filtration rate were significantly increased in the first 20 min after frusemide. These changes were significantly attenuated by indomethacin compared with placebo and ibuprofen 400 mg. Frusemide-induced diuresis but not natriuresis was inhibited by all treatments. 4. Both nonsteroidal agents inhibited equally the rise in renin activity seen after frusemide. 5. In this group of healthy volunteers on a salt restricted diet, ibuprofen and indomethacin had no detrimental effects on renal function in the absence of frusemide. The changes in renal haemodynamics due to frusemide were suppressed more by indomethacin than by ibuprofen, probably reflecting the more potent nature of indomethacin as an inhibitor of prostaglandin synthesis.
Resumo:
The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1e) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M-r of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M-r 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to -9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 mug (.) kg(-1) (.) min(-1), followed by 2 h at 83.0 mug (.) kg(-1) (.) min(-1); corresponding to 0.4 and 2.0 mU (.) kg(-1) (.) min(-1)). At the lower dose, the exogenons glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P
Resumo:
Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.
Resumo:
AimsThe main aim of this study was to determine the virucidal inactivation efficacy of an in-house-designed atmospheric pressure, nonthermal plasma jet operated at varying helium/oxygen feed gas concentrations against MS2 bacteriophage, widely employed as a convenient surrogate for human norovirus.
Methods and ResultsThe effect of variation of percentage oxygen concentration in the helium (He) carrier gas was studied and found to positively correlate with MS2 inactivation rate, indicating a role for reactive oxygen species (ROS) in viral inactivation. The inactivation rate constant increased with increasing oxygen concentrations up to 075% O-2. 3 log(10) (999%) reductions in MS2 viability were achieved after 3min of exposure to the plasma source operated in a helium/oxygen (9925%:075%) gas mixture, with >7 log(10) reduction after 9min exposure.
ConclusionsAtmospheric pressure, nonthermal plasmas may have utility in the rapid disinfection of virally contaminated surfaces for infection control applications.
Significance and Impact of StudyThe atmospheric pressure, nonthermal plasma jet employed in this study exhibits rapid virucidal activity against a norovirus surrogate virus, the MS2 bacteriophage, which is superior to previously published inactivation rates for chemical disinfectants.
Resumo:
This article reveals the effect of plasma pre-treatment on antimony tin oxide (ATO) nanoparticles. The effect is to allow Pt@Pd to be deposited homogeneously on the ATO surface with high dispersion and narrow particle size distribution. The Pt@Pd core–shell catalyst was prepared using the polyol method and shows a dramatic improvement towards ORR activity and durability.
Resumo:
The bacterial pigment prodigiosin has various biological activities; it is, for instance, an effective antimicrobial. Here, we investigate the primary site targeted by prodigiosin, using the cells of microbial pathogens of humans as model systems: Candida albicans, Escherichia coli, Staphylococcus aureus. Inhibitory concentrations of prodigiosin; leakage of intracellular K+ ions, amino acids, proteins and sugars; impacts on activities of proteases, catalases and oxidases; and changes in surface appearance of pathogen cells were determined. Prodigiosin was highly inhibitory (30% growth rate reduction of C. albicans, E. coli, S. aureus at 0.3, 100 and 0.18 μg ml−1, respectively); caused leakage of intracellular substances (most severe in S. aureus); was highly inhibitory to each enzyme; and caused changes to S. aureus indicative of cell-surface damage. Collectively, these findings suggest that prodigiosin, log Poctanol–water 5.16, is not a toxin but is a hydrophobic stressor able to disrupt the plasma membrane via a chaotropicity-mediated mode-of-action.
Resumo:
Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(LyS(37)PAL) and N-AcGIP(LyS(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25 nmol kg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(LyS(37)PAL) or N-AcGIP(LyS37PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP. (c) 2006 Elsevier Inc. All rights reserved.