6 resultados para Plants - Effect of trace elements on
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The study assessed the effect of heating vermiculites on extractability of phosphorus, iron, zinc and manganese with respect to their potential agricultural use. Of these elements, phosphorus was from apatite and monazite that occur as accessory minerals in vermiculites. Vermiculites were heated at 15-800 degrees C and digested by acetic acid for extracting phosphorus and diethylene triamine pentaacetic acid (DTPA) for extracting zinc, iron and manganese. Phosphorus in the extract was analysed by a flow injection method while zinc, iron and manganese were measured by atomic absorption spectrometry. The results showed that heating vermiculites to 400 C enhanced extractability of phosphorus from apatite and monazite to a level of 335 mg kg(-1). Further heating to 800 degrees C reduced extractable phosphorus to less than 75 mg kg(-1). Maximum extractable zinc, iron and manganese found were 2.7, 19.1 and 22.9 mg kg(-1), respectively, values that are beneficial and tolerable by most plants. Thus, it was concluded that heating vermiculites to
Resumo:
In shaded scenes surface features can appear either concave or convex, depending upon the viewers judment about the direction of the prevailing illuminant. If other curvature cues are added to the image this ambiguity can be removed. However, it is not clear to what extent, if any, illuminant positin exerts an influence on the perceived magnitude of surface curvature. Subjects were presented with pairs of spherical surface patches in a curavture matching task. The patches were defined by shading and texture cues. The percevied curvature of a standard patch was measured as a function of light source position. We found a clear effect of light source position on apparent curvature. Perceived curvature decreased as light source tilt increased and as light source slant decreased. We also found that the strength of this effect is determined partly by a surface's reflectance function and partly by the relative weight of the texture cue. When a specular component was added to the stimuli, the effect of light source orientation was weakened. The weight of the texture cue was manipulated by disrupting the regular distribution of texture elements. We found an inverse relationship between the strength of the effecct and the weight of the texture cue: lowering the texture cue weight resulted in an enhancement of the illuminant position effect.
Resumo:
Geologic and environmental factors acting over varying spatial scales can control
trace element distribution and mobility in soils. In turn, the mobility of an element in soil will affect its oral bioaccessibility. Geostatistics, kriging and principal component analysis (PCA) were used to explore factors and spatial ranges of influence over a suite of 8 element oxides, soil organic carbon (SOC), pH, and the trace elements nickel (Ni), vanadium (V) and zinc (Zn). Bioaccessibility testing was carried out previously using the Unified BARGE Method on a sub-set of 91 soil samples from the Northern Ireland Tellus1 soil archive. Initial spatial mapping of total Ni, V and Zn concentrations shows their distributions are correlated spatially with local geologic formations, and prior correlation analyses showed that statistically significant controls were exerted over trace element bioaccessibility by the 8 oxides, SOC and pH. PCA applied to the geochemistry parameters of the bioaccessibility sample set yielded three principal components accounting for 77% of cumulative variance in the data
set. Geostatistical analysis of oxide, trace element, SOC and pH distributions using 6862 sample locations also identified distinct spatial ranges of influence for these variables, concluded to arise from geologic forming processes, weathering processes, and localised soil chemistry factors. Kriging was used to conduct a spatial PCA of Ni, V and Zn distributions which identified two factors comprising the majority of distribution variance. This was spatially accounted for firstly by basalt rock types, with the second component associated with sandstone and limestone in the region. The results suggest trace element bioaccessibility and distribution is controlled by chemical and geologic processes which occur over variable spatial ranges of influence.
Resumo:
Perennial rye-grass plants were grown at 15°C in microcosms containing soil sampled from field plots that had been maintained at constant pH for the last 30 years. Six soil pH values were tested in the experiment, with pH ranging from 4.3-6.5. After 3 weeks growth in the microcosms, plant shoots were exposed to a pulse of 14C-CO2. The fate of this label was determined by monitoring 14C-CO2 respired by the plant roots/soil and by the shoots. The 14C remaining in plant roots and shoots was determined when the plants were harvested 7 days after receiving the pulse label. The amount of 14C (expressed as a percentage of the total 14C fixed by the plant) lost from the plant roots increased from 12.3 to 30.6% with increasing soil pH from 4.3 to 6. Although a greater percentage of the fixed 14C was respired by the root/soil as soil pH increased, plant biomass was greater with increasing soil pH. Possible reasons for observed changes in the pattern of 14C distribution are discussed and, it is suggested that changes in the soil microbial biomass and in plant nitrogen nutrition may, in particular be key factors which led to increased loss of carbon from plant roots with increasing soil pH. © 1990 Kluwer Academic Publishers.