2 resultados para Plant protection

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pesticide use is important in agriculture to protect crops and improve productivity. However, they have the potential to cause adverse human health or environmental effects, dependent on exposure levels. This review examines existing pesticide legislation worldwide, focusing on the level of harmonisation, and impacts of differing legislation on food safety and trade. Pesticide legislation varies greatly worldwide as countries have different requirements guidelines and legal limits for plant protection. Developed nations have more stringent regulations than developing countries, which lack the resources and expertise to adequately implement and enforce legislation. Global differences in pesticide legislation act as a technical barrier to trade. International parties such as the European Union (EU), Codex Alimentarius Commission (Codex), and North American Free Trade Agreement (NAFTA) have attempted to harmonise pesticide legislation by providing maximum residue limits (MRLs), but globally these limits remain variable. Globally harmonised pesticide standards would serve to increase productivity, profits and trade, and enhance the ability to protect public health and the environment. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss-of-mains protection is an important component of the protection systems of embedded generation. The role of loss-of-mains is to disconnect the embedded generator from the utility grid in the event that connection to utility dispatched generation is lost. This is necessary for a number of reasons, including the safety of personnel during fault restoration and the protection of plant against out-of-synchronism reclosure to the mains supply. The incumbent methods of loss-of-mains protection were designed when the installed capacity of embedded generation was low, and known problems with nuisance tripping of the devices were considered acceptable because of the insignificant consequence to system operation. With the dramatic increase in the installed capacity of embedded generation over the last decade, the limitations of current islanding detection methods are no longer acceptable. This study describes a new method of loss-of-mains protection based on phasor measurement unit (PMU) technology, specifically using a low cost PMU device of the authors' design which has been developed for distribution network applications. The proposed method addresses the limitations of the incumbent methods, providing a solution that is free of nuisance tripping and has a zero non-detection zone. This system has been tested experimentally and is shown to be practical, feasible and effective. Threshold settings for the new method are recommended based on data acquired from both the Great Britain and Ireland power systems.