51 resultados para Pit corrosion
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Pitting corrosion of stainless steels, one of the classical problems in materials science and electrochemistry, is generally believed to originate from the local dissolution in MnS inclusions, which are more or less ubiquitous in stainless steels. However, the initial location where MnS dissolution preferentially occurs is known to be unpredictable, which makes pitting corrosion a major concern. In this work we show, at an atomic scale, the initial site where MnS starts to dissolve in the presence of salt water. Using in situ ex-environment transmission electron microscopy (TEM), we found a number of nano-sized octahedral MnCr2O4 crystals (with a spinel structure and a space group of Fd (3) over barm) embedded in the MnS medium, generating local MnCr2O4/MnS nano-galvanic cells. The TEM experiments combined with first-principles calculations clarified that the nano-octahedron, enclosed by eight {1 1 1} facets with metal terminations, is "malignant", and this acts as the reactive site and catalyses the dissolution of MnS. This work not only uncovers the origin of MnS dissolution in stainless steels, but also presents an atomic-scale evolution in a material's failure which may occur in a wide range of engineering alloys and biomedical instruments serving in wet environments. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
Tagging animals is frequently employed in ecological studies to monitor individual behaviour, for example postrelease survival and dispersal of captive-bred animals used in conservation programmes. While the majority of studies focus on the efficacy of tags in facilitating the relocation and identification of individuals, few assess the direct effects of tagging in biasing animal behaviour. We used an experimental approach with a control to differentiate the effects of handling and tagging captive-bred juvenile freshwater pearl mussels, Margaritifera margaritifera, prior to release into the wild. Marking individuals with passive integrated transponder (PIT) tags significantly decreased their burrowing rate and, therefore, increased the time taken to burrow into the substrate. This effect was contributed to, in part, by the detrimental impacts of handling, which also significantly affected activity, burrowing ability and the time taken for each individual to emerge and start probing the substrate. Disturbance during handling and tagging may lead to indirect mortality after release by increasing the risk of predation or dislodgement during flooding, thereby potentially compromising any conservation strategy contingent on population supplementation or reintroduction. This is the first study to demonstrate that handling and PIT tagging has a detrimental impact on invertebrate behaviour. Moreover, our results provide useful information that will inform freshwater bivalve conservation strategies.
Resumo:
Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.