4 resultados para Phosphate nutrient

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An experimental study on the adsorption of phosphate onto cost effective fine dolomite powder is presented. The effect of solution pH, solution ionic strength and adsorption isotherm were examined. The adsorption of phosphate was pH dependent and phosphate adsorption favoured acidic conditions. The adsorption was significantly influenced by solution ionic strength indicating outer-sphere complexation reactions. The experimental data further indicated that the removal of phosphate increased with increase in the ionic strength of solution. The experimental data were modelled with different isotherms: Langmuir, Freundlich and Redlich–Peterson isotherms. It was found that the Redlich–Peterson isotherm depicted the equilibrium data most accurately. The overall kinetic data fitted very well the pseudo-first-order rate model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the production of organic fertilizer using Anaerobic Digestate (as a nutrient source) and limestone powder as the raw materials. A two-level factorial experimental design was used to determine the influence of process variables on the nutrient homogeneity within the granules. Increasing the liquid-to-solid ratio during granulation resulted in increased granule nutrient homogeneity. Increasing the processing time and the impeller speed were also found to increase the nutrient homogeneity. In terms of nutrients release into deionized water, the granules effectively released both potassium and phosphate into solution. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.