4 resultados para Phialophora verrucosa

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graneledone verrucosa (Verrill 1881), the type species of the genus Graneledone, is redescribed based on historical material and previously unreported specimens that have resulted from an increase in deep-sea fishing in the North East Atlantic. Graneledone verrucosa var. media (Joubin 1918) was found to be invalid and is herein synonymized with G. verrucosa. Graneledone verrucosa is shown to inhabit deep water throughout the North Atlantic; its distribution extends from 20degrees to 65degrees N and from 9degrees to 75degrees W. A revised diagnosis is given for the genus Graneledone Joubin, 1918.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chromosome number of Gracilaria verrucosa (Hudson) Papenfuss was estimated in numerous individuals from different populations of the Cape Gris-Nez area of Northern France. To optimize estimates and to minimize counting errors, several counts were made on the same nucleus and in different nuclei of the same individual. The haploid chromosome number was estimated in vegetative gametophytic cells and tetrasporocytic cells; the diploid number was estimated from tetrasporophytic vegetative cells. The basic haploid number was n = 17 +/- 1, whereas all other Gracilaria species for which chromosome numbers are available are reported to have n = 24. These include populations of G. verrucosa from Norway and Wales that have previously been shown to be conspecific with the Cape Gris-Nez populations by comparison of plastid DNA data. G. verrucosa is therefore one of the few red algae for which populations with different chromosome numbers are known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coleoid cephalopods show flexibility in their reproductive strategies or mode of spawning, which can range from simultaneous terminal spawning over a short period at the end of the animal’s life to continuous spawning over a long period of the animal’s life. Although a simultaneous terminal spawning strategy is typical of shallow water temperate octopuses, it is not known whether deep-sea octopods would have the same reproductive strategy. The reproductive strategies and fecundity were investigated in nine species of deep-sea incirrate octopuses: Bathypolypus arcticus, Bathypolypus bairdii, Bathypolypus ergasticus, Bathypolypus sponsalis, Bathypolypus valdiviae, Benthoctopus levis, Benthoctopus normani, Benthoctopus sp., and Graneledone verrucosa (total n = 85). Egg-length frequency graphs and multivariate analysis (principal components analysis) suggest that B. sponsalis has a synchronous ovulation pattern and therefore a simultaneous terminal spawning strategy. Although a simultaneous terminal spawning strategy is most likely for B. levis and B. normani, the egg-length frequency graphs and multivariate analysis also suggest a greater variation in egglengths which could lead to spawning over an extended period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary

1.While plant–fungal interactions are important determinants of plant community assembly and ecosystem functioning, the processes underlying fungal community composition are poorly understood.
2.Here, we studied for the first time the root-associated eumycotan communities in a set of co-occurring plant species of varying relatedness in a species-rich, semi-arid grassland in Germany. The study system provides an opportunity to evaluate the importance of host plants and gradients in soil type and landscape structure as drivers of fungal community structure on a relevant spatial scale. We used 454 pyrosequencing of the fungal internal transcribed spacer region to analyse root-associated eumycotan communities of 25 species within the Asteraceae, which were sampled at different locations within a soil type gradient. We partitioned the variance accounted for by three predictors (host plant phylogeny, spatial distribution and soil type) to quantify their relative roles in determining fungal community composition and used null model analyses to determine whether community composition was influenced by biotic interactions among the fungi.
3.We found a high fungal diversity (156 816 sequences clustered in 1100 operational taxonomic units (OTUs)). Most OTUs belonged to the phylum Ascomycota (35.8%); the most abundant phylotype best-matched Phialophora mustea. Basidiomycota were represented by 18.3%, with Sebacina as most abundant genus. The three predictors explained 30% of variation in the community structure of root-associated fungi, with host plant phylogeny being the most important variance component. Null model analysis suggested that many fungal taxa co-occurred less often than expected by chance, which demonstrates spatial segregation and indicates that negative interactions may prevail in the assembly of fungal communities.
4.Synthesis. The results show that the phylogenetic relationship of host plants is the most important predictor of root-associated fungal community assembly, indicating that fungal colonization of host plants might be facilitated by certain plant traits that may be shared among closely related plant species.