31 resultados para Phase modeling

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

From a review of technical literature, it was not apparent if the Lagrangian or the Eulerian dispersed phase modeling approach was more valid to simulate dilute erosive slurry flow. In this study, both modeling approaches were employed and a comparative analysis of performances and accuracy between the two models was carried out. Due to an impossibility to define, for the Eulerian model already implemented in FLUENT, a set of boundary conditions consistent with the Lagrangian impulsive equations, an Eulerian dispersed phase model was integrated in the FLUENT code using subroutines and user-defined scalar equations. Numerical predictions obtained from the two different approaches for two-phase flow in a sudden expansion were compared with the measured data. Excellent agreement was attained between the predicted and observed fluid and particle velocity in the axial direction and for the kinetic energy. Erosion profiles in a sudden expansion computed using the Lagrangian scheme yielded good qualitative agreement with measured data and predicted a maximum impact angle of 29 deg at the fluid reattachment point. The Eulerian model was adversely affected by the reattachment of the fluid phase to the wall and the simulated erosion profiles were not in agreement with the Lagrangian or measured data. Furthermore, the Eulerian model under-predicted the Lagrangian impact angle at all locations except the reattachment point. © 2010 American Society of Mechanical Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic liquids (ILs) have been suggested as potential

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a method for modeling diffusive boundaries in finite difference time domain (FDTD) room acoustics simulations with the use of impedance filters is presented. The proposed technique is based on the concept of phase grating diffusers, and realized by designing boundary impedance filters from normal-incidence reflection filters with added delay. These added delays, that correspond to the diffuser well depths, are varied across the boundary surface, and implemented using Thiran allpass filters. The proposed method for simulating sound scattering is suitable for modeling high frequency diffusion caused by small variations in surface roughness and, more generally, diffusers characterized by narrow wells with infinitely thin separators. This concept is also applicable to other wave-based modeling techniques. The approach is validated by comparing numerical results for Schroeder diffusers to measured data. In addition, it is proposed that irregular surfaces are modeled by shaping them with Brownian noise, giving good control over the sound scattering properties of the simulated boundary through two parameters, namely the spectral density exponent and the maximum well depth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes by means of a simple model how signal recombination effects behave under the influence of phase conjugating retrodirective array (RDA) technology. A two-ray ground reflection model is used to predict the operational advantages of RDA technology in multipath rich environments. The simulation results show that advantageous signal recombination occurs due to automatic self-phasing. As the number of elements in the RDA increases, the fading effect normally observed due to out of phase multipath signal is mitigated to the extent that the system approaches that of one operating in a free space environment. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1987–1989, 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M , progenitor radius R ∼ 3 × 1013 cm (∼430 R), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M of the Type IIP events. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.