29 resultados para Phase diagram

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S=1 Heisenberg model with biquadratic interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The phase behavior of a model system of colloidal platelets and nonadsorbing polymers is studied using computer simulations and perturbation theory. The equation of state for the pure platelet reference system is obtained by Monte Carlo simulations, and the free volume fraction accessible to polymers is measured by a trial insertion method. The free volume fraction is also calculated using scaled particle theory. Subsequently, the phase diagram for platelet-polymer mixtures is calculated. For a platelet aspect ratio L/D=0.1 and a polymer to platelet size ratio d/D>0.2, we observe coexistence between two isotropic phases with different densities. For smaller polymers d/D

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports both the binary and ternary phase behavior of ionic liquids for extracting cyclohexanecarboxylic acid (CCA) from dodecane. This system is a model for the extraction of acids representative of naphthenic acids found in crude oils. In order to develop an effective ternary liquid-liquid extraction system the preliminary selection of ionic liquids was based on CCA miscibility and the dodecane immiscibility with selected ILs. A wide range of ILs based on different cations, anions, cation alkyl-chain length, as well as the effect of temperature on the overall fluid phase behavior is reported. Factors such as variation of cation group, anion effect, alkyl-chain length, and temperature all impact the extraction to various degrees. The largest effects were found to be the lipophilicity of the IL cation and the co-ordination ability of the anion. While CCA capacity increased with lipophilicity of the cation, as did the dodecane. Highly coordinating anions such as trifluoroacetate and triflate demonstrated that highly efficient extraction could be obtained producing favorable tie-lines in the ternary phase diagram. Overall, this study demonstrates that ILs can selectively extract acids from hydrocarbon streams and offers possible treatment solutions for problems associated with the processing of high acid crude oils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Amorphous drug-polymer solid dispersions have been found to result in improved drug dissolution rates when compared to their crystalline counterparts. However, when the drug exists in the amorphous form it will possess a higher Gibb’s free energy than its associated crystalline state and can recrystallize. Drug-polymer phase diagrams constructed through the application of the Flory Huggins (F-H) theory contain a wealth of information regarding thermodynamic and kinetic stability of the amorphous drug-polymer system. This study was aimed to evaluate the effects of various experimental conditions on the solubility and miscibility detections of drug-polymer binary system. Methods: Felodipine (FD)-Polyvinylpyrrolidone (PVP) K15 (PVPK15) and FD-Polyvinylpyrrolidone/vinyl acetate (PVP/VA64) were the selected systems for this research. Physical mixtures with different drug loadings were mixed and ball milled. These samples were then processed using Differential Scanning Calorimetry (DSC) and measurements of melting point (Tend) and glass transition (Tg) were detected using heating rates of 0.5, 1.0 and 5.0°C/min. Results: The melting point depression data was then used to calculate the F-H interaction parameter (χ) and extrapolated to lower temperatures to complete the liquid–solid transition curves. The theoretical binodal and spinodal curves were also constructed which were used to identify regions within the phase diagram. The effects of polymer selection, DSC heating rate, time above parent polymer Tg and polymer molecular weight were investigated by identifying amorphous drug miscibility limits at pharmaceutically relevant temperatures. Conclusion: The potential implications of these findings when applied to a non-ambient processing method such as Hot Melt Extrusion (HME) are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose The aim of this work was to examine, for amorphous solid dispersions, how the thermal analysis method selected impacts on the construction of thermodynamic phase diagrams, and to assess the predictive value of such phase diagrams in the selection of optimal, physically stable API-polymer compositions. Methods Thermodynamic phase diagrams for two API/polymer systems (naproxen/HPMC AS LF and naproxen/Kollidon 17 PF) were constructed from data collected using two different thermal analysis methods. The “dynamic” method involved heating the physical mixture at a rate of 1 &[deg]C/minute. In the "static" approach, samples were held at a temperature above the polymer Tg for prolonged periods, prior to scanning at 10 &[deg]C/minute. Subsequent to construction of phase diagrams, solid dispersions consisting of API-polymer compositions representative of different zones in the phase diagrams were spray dried and characterised using DSC, pXRD, TGA, FTIR, DVS and SEM. The stability of these systems was investigated under the following conditions: 25 &[deg]C, desiccated; 25 &[deg]C, 60 % RH; 40 &[deg]C, desiccated; 40 &[deg]C, 60 % RH. Results Endset depression occurred with increasing polymer volume fraction (Figure 1a). In conjunction with this data, Flory-Huggins and Gordon-Taylor theory were applied to construct thermodynamic phase diagrams (Figure 1b). The Flory-Huggins interaction parameter (&[chi]) for naproxen and HPMC AS LF was + 0.80 and + 0.72, for the dynamic and static methods respectively. For naproxen and Kollidon 17 PF, the dynamic data resulted in an interaction parameter of - 1.1 and the isothermal data produced a value of - 2.2. For both systems, the API appeared to be less soluble in the polymer when the dynamic approach was used. Stability studies of spray dried solid dispersions could be used as a means of validating the thermodynamic phase diagrams. Conclusion The thermal analysis method used to collate data has a deterministic effect on the phase diagram produced. This effect should be considered when constructing thermodynamic phase diagrams, as they can be a useful tool in predicting the stability of amorphous solid dispersions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report results of first-principles calculations on the thermodynamic stability of different Sr adatom structures that have been proposed to explain some of the observed reconstructions of the (001) surface of strontium titanate (Kubo and Nozoye 2003 Surf Sci. 542 177). From surface free energy calculations, a phase diagram is constructed indicating the range of conditions over which each structure is most stable. These results are compared with Kubo and Nozoye's experimental observations. It is concluded that low Sr adatom coverage structures can only be explained if the surface is far from equilibrium. Intermediate coverage structures are stable only if the surface is in or very nearly in equilibrium with the strontium oxide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c(3) reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c(3) as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c(3) required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c(3). The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and-for sufficiently high values of c(3)-there is a reversible polymer-gel transformation at a density-dependent floor temperature. (C) 2002 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rings of perovskite lead zirconium titanate (PZT) with internal diameters down to similar to 5 nm and ring thicknesses of similar to 5-10 nm have been fabricated and structurally, crystallographically, and chemically characterized using an analytical transmission electron microscope. Ring fabrication involved conformal solution deposition of a thin layer of PZT on the inside of a thin film of anodized aluminum oxide nanopores, and subsequent sectioning of the coated pores perpendicular to their cylinder axes. Although the starting solution used for the solution deposition was made from morphotropic phase boundary PZT, the nanorings were found to be on the zirconium-rich side of the PZT phase diagram. Nevertheless, coatings were found to be of perovskite crystallography. The dimensions of these nanorings are such that they have the potential to demonstrate polarization vortices, as modeled by Naumov [Nature (London) 432, 737 (2004)], and moreover represent the perfect morphology to allow vortex alignment and the creation of the ferroelectric "solenoid" as modeled by Gorbatsevich and Kopaev [Ferroelectrics 161, 321 (1994)].