9 resultados para Permo-Carboniferous

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variability in nitrogen fate and transport in different catchments types is often not considered. This research considers the importance of such nitrogen processes within groundwater pathways in two agricultural catchments in Ireland; a well drained catchment, underlain by karstified Carboniferous limestone, and a poorly drained catchment, underlain by Silurian greywacke.
Depth specific low-flow groundwater sampling was used to evaluate the hydrochemical stratification in groundwater. Groundwater samples, as well as surface water samples, along river courses were analysed for nitrogen species (NO3, NH4 and NO2) and nitrate isotopes (d15N and d18O) as well as field parameters and major ions
.
The dominant nitrate (NO3) groundwater pathway in the poorly drained greywacke catchment is through the shallow weathered bedrock, as indicated by transmissivity values and the ionic and isotopic signatures, and a clear reduction in NO3 concentration is observed with depth. A similar chloride trend would suggest dilution is a major factor, however d15N and d18O isotopic values producing an enrichment ratio of 1.8 indicate that denitrification is also an important process involved in the fate of the NO3 within the groundwater flow system. This consistent trend with depth is in contrast to the stratification pattern observed in the karstified catchment. NO3 was not detected in the shallow groundwater pathway; the dominant groundwater pathway is in the deeper groundwater where there is little change in the nitrate isotope values with depth (d15N values range between 4.1 and 4.6 ‰). This deeper groundwater contributes the dominant proportion of the river flow through a number of springs. As a result, the deeper groundwater, springs and river have a similar ionic signature and NO3 concentration range (23 ± 3 mg/l). Despite this pattern, the NO3 isotopes show a distinct difference in isotopic values between the deeper groundwater in the diffuse karst and the springs indicating some denitrification is occurring during groundwater discharge into the river. Furthermore the isotopes give an indication of the variability of the spatial extent of the springs and the complexities of the fissures through which they are fed. The results of this study clearly show the importance of the geology in the fate and transport of NO3 in agricultural catchments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In highly heterogeneous aquifer systems, conceptualization of regional groundwater flow models frequently results in the generalization or negligence of aquifer heterogeneities, both of which may result in erroneous model outputs. The calculation of equivalence related to hydrogeological parameters and applied to upscaling provides a means of accounting for measurement scale information but at regional scale. In this study, the Permo-Triassic Lagan Valley strategic aquifer in Northern Ireland is observed to be heterogeneous, if not discontinuous, due to subvertical trending low-permeability Tertiary dolerite dykes. Interpretation of ground and aerial magnetic surveys produces a deterministic solution to dyke locations. By measuring relative permeabilities of both the dykes and the sedimentary host rock, equivalent directional permeabilities, that determine anisotropy calculated as a function of dyke density, are obtained. This provides parameters for larger scale equivalent blocks, which can be directly imported to numerical groundwater flow models. Different conceptual models with different degrees of upscaling are numerically tested and results compared to regional flow observations. Simulation results show that the upscaled permeabilities from geophysical data allow one to properly account for the observed spatial variations of groundwater flow, without requiring artificial distribution of aquifer properties. It is also found that an intermediate degree of upscaling, between accounting for mapped field-scale dykes and accounting for one regional anisotropy value (maximum upscaling) provides results the closest to the observations at the regional scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fault and fracture systems are the most important store and pathway for groundwater in Ireland’s bedrock aquifers, either directly as conductive flow structures, or indirectly as the locus for the development of dolomitised limestone and karst. This article presents the preliminary results of a study involving the quantitative analysis of fault and fracture systems in the broad range of Irish bedrock types and a consideration of their impact on groundwater flow. The principal aims of the project are to develop generic conceptual models for different fault/fracture systems in different lithologies and at different depths, and to link them to observed groundwater behaviour. Here we briefly describe the geometrical characteristics of the main post-Devonian fault/fracture systems controlling groundwater flow from field observations at outcrops, quarries and mines. The structures range from Lower Carboniferous normal faults through to Variscan-related faults and veins, with the most recent structures including Tertiary strike-slip faults and ubiquitous uplift-related joint systems. The geometrical characteristics of different fault/fracture systems combined with observations of groundwater behaviour in both quarry and mine localities, can be linked to general flow and transport conceptualisations of Irish fractured bedrock. Most importantly they also provide a basis for relating groundwater flow to particular fault/fracture systems and their expression with depth and within different lithological sequences, as well as their regional variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of lichens to the biomodification of limestone surfaces is an area of conflict within bioweathering studies, with some researchers suggesting a protective effect induced by lichen coverage and others a deteriorative effect induced by the same organisms.Data are reported demonstrating the potential role of endolithic lichen, in particular of Bagliettoa baldensis, in the active protection of Carboniferous limestone surfaces from rainfall-induced solutional weathering. During a 12-month microcatchment exposure period in the west of Northern Ireland, average dissolutional losses of calciumare greater from a lichen-free limestone surface compared with a predominantly endolithic lichen-covered surface by just under 1.25 times. During colderwintermonths, the lichen free surface experiences calcium loss almost 1.5 times greater than the lichen-covered surface. Using extrapolation to upscale from the micro-catchment sample scale, for the year of sample exposure, the rate of calcium loss is 1.001 g m−2 a−1 from lichen-covered limestone surfaces and 1.228 gm−2 a−1 from lichen-free bare limestone surfaces. This research has implications for our understanding of karst environments, the contribution of lichens to karren development and the conservation of lichen-colonised dimension stone within a cultural setting.