8 resultados para Pedestrians

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To compare risk of fatal injury in elderly road users (drivers, passengers, pedestrians) with that of younger age groups and to assess the contribution of elderly road users to the number of reported fatalities in the population. Design Fatality age was categorized as 21 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, or 70 and older, and road user was categorized as driver, passenger, or pedestrian. Estimated number of trips made by each age group was used to adjust for exposure and to measure individual risk. Setting Fatalities recorded in Britain between 1989 and 2009. Participants Population-wide fatal injury counts in Britain. Measurements Age of fatally injured drivers, passengers, and pedestrians. Estimated number of trips made per year by drivers, passengers, and pedestrians. Results Risk of fatal injury, but not fatality numbers in the population, were higher for older adult (=70) drivers than for younger age groups. Risk of fatal injury was also high for older adult passengers and pedestrians, who represented the majority of older adult fatalities. Conclusion Previous emphasis on driver impairment in older age has unduly focussed attention on elderly drivers, who represent a minority of all driver fatalities. Older adults represent a much larger proportion of passenger and pedestrian fatalities. Additional policy schemes and initiatives should be targeted at safeguarding older adult passengers and making the road environment safer for elderly pedestrians. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the pose recovery problem of a particular articulated object: the human body. In this model-based approach, the 2D-shape is associated to the corresponding stick figure allowing the joint segmentation and pose recovery of the subject observed in the scene. The main disadvantage of 2D-models is their restriction to the viewpoint. To cope with this limitation, local spatio-temporal 2D-models corresponding to many views of the same sequences are trained, concatenated and sorted in a global framework. Temporal and spatial constraints are then considered to build the probabilistic transition matrix (PTM) that gives a frame to frame estimation of the most probable local models to use during the fitting procedure, thus limiting the feature space. This approach takes advantage of 3D information avoiding the use of a complex 3D human model. The experiments carried out on both indoor and outdoor sequences have demonstrated the ability of this approach to adequately segment pedestrians and estimate their poses independently of the direction of motion during the sequence. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that strongly affect the quality of indoor wireless communication systems. This paper describes a statistical channel characterization, based on experimental measurements, of human body effects on line-of-sight indoor narrowband propagation at 5.2 GHz. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. Level crossing rate results were Rice distributed, while average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel CDF that accurately characterizes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Fewer than 50% of adults and 40% of youth meet US CDC guidelines for physical activity (PA) with the built environment (BE) a culprit for limited PA. A challenge in evaluating policy and BE change is the forethought to capture a priori PA behaviors and the ability to eliminate bias in post-change environments. The present objective was to analyze existing public data feeds to quantify effectiveness of BE interventions. The Archive of Many Outdoor Scenes (AMOS) has collected 135 million images of outdoor environments from 12,000 webcams since 2006. Many of these environments have experienced BE change. Methods: One example of BE change is the addition of protected bike lanes and a bike share program in Washington, DC.Weselected an AMOS webcam that captured this change. AMOS captures a photograph from eachwebcamevery half hour.AMOScaptured the 120 webcam photographs between 0700 and 1900 during the first work week of June 2009 and the 120 photographs from the same week in 2010. We used the Amazon Mechanical Turk (MTurk) website to crowd-source the image annotation. MTurk workers were paid US$0.01 to mark each pedestrian, cyclist and vehicle in a photograph. Each image was coded 5 unique times (n=1200). The data, counts of transportation mode, was downloaded to SPSS for analysis. Results: The number of cyclists per scene increased four-fold between 2009 and 2010 (F=36.72, p=0.002). There was no significant increase in pedestrians between the two years, however there was a significant increase in number of vehicles per scene (F=16.81, p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.