6 resultados para Pedestrian Model
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
This paper presents the results of a real bridge field experiment, carried out on a fiber reinforced polymer (FRP) pedestrian truss bridge of which nodes are reinforced with stainless steel plates. The aim of this paper is to identify the dynamic parameters of this bridge by using both conventional techniques and a model updating algorithm. In the field experiment, the bridge was instrumented with accelerometers at a number of locations on the bridge deck, recording both vertical and transverse vibrations. It was excited via jump tests at particular locations along its span and the resulting acceleration signals are used to identify dynamic parameters, such as the bridge mode shape, natural frequency and damping constant. Pedestrianinduced vibrations are also measured and utilized to identify dynamic parameters of the bridge. For a complete analysis of the bridge, a numerical model of the FRP bridge is created whose properties are calibrated utilizing a model updating algorithm. Comparable frequencies and mode shapes to those from the experiment were obtained by the FE models considering the reinforcement by increasing elastic modulus at every node of the bridge by stainless steel plate. Moreover, considering boundary conditions at both ends as fixed in the model resulted in modal properties comparable/similar to those from the experiment. This study also demonstrated that the effect of reinforcement and boundary conditions must be properly considered in an FE model to analyze real behavior of the FRP bridge.
Resumo:
This letter presents novel behaviour-based tracking of people in low-resolution using instantaneous priors mediated by head-pose. We extend the Kalman Filter to adaptively combine motion information with an instantaneous prior belief about where the person will go based on where they are currently looking. We apply this new method to pedestrian surveillance, using automatically-derived head pose estimates, although the theory is not limited to head-pose priors. We perform a statistical analysis of pedestrian gazing behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using instantaneous `intentional' priors our algorithm significantly outperforms a standard Kalman Filter on comprehensive test data.
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.