3 resultados para Paredes portantes
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.
Resumo:
Despite its importance in social interactions, laughter remains little studied in affective computing. Intelligent virtual agents are often blind to users’ laughter and unable to produce convincing laughter themselves. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received less attention. The aim of this study is threefold. First, to probe human laughter perception by analyzing patterns of categorisations of natural laughter animated on a minimal avatar. Results reveal that a low dimensional space can describe perception of laughter “types”. Second, to investigate observers’ perception of laughter (hilarious, social, awkward, fake, and non-laughter) based on animated avatars generated from natural and acted motion-capture data. Significant differences in torso and limb movements are found between animations perceived as laughter and those perceived as non-laughter. Hilarious laughter also differs from social laughter. Different body movement features were indicative of laughter in sitting and standing avatar postures. Third, to investigate automatic recognition of laughter to the same level of certainty as observers’ perceptions. Results show recognition rates of the Random Forest model approach human rating levels. Classification comparisons and feature importance analyses indicate an improvement in recognition of social laughter when localized features and nonlinear models are used.
Resumo:
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. © 2013 Elsevier B.V. All rights reserved.