71 resultados para Packet Filtering
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
The future convergence of voice, video and data applications on the Internet requires that next generation technology provides bandwidth and delay guarantees. Current technology trends are moving towards scalable aggregate-based systems where applications are grouped together and guarantees are provided at the aggregate level only. This solution alone is not enough for interactive video applications with sub-second delay bounds. This paper introduces a novel packet marking scheme that controls the end-to-end delay of an individual flow as it traverses a network enabled to supply aggregate- granularity Quality of Service (QoS). IPv6 Hop-by-Hop extension header fields are used to track the packet delay encountered at each network node and autonomous decisions are made on the best queuing strategy to employ. The results of network simulations are presented and it is shown that when the proposed mechanism is employed the requested delay bound is met with a 20% reduction in resource reservation and no packet loss in the network.
Resumo:
An equation is presented for calculating the fairness of dynamically adaptive packet schedulers such as dynamic weighted fair queuing (DWFQ). The fairness of static packet schedulers such as weighted fair queue (WFQ) can be found using the widely accepted Worst-case Fair Index. The fairness of DWFQ can be measured using an Adapted Worst-case Fairness Index (AWFI). The AWFI enables a direct comparison of fairness properties of the DWFQ or other dynamically adaptive schedulers with static/non-adaptive schedulers.
Resumo:
Eight thousand images of the solar corona were captured during the June 2001 total solar eclipse. New software for the alignment of the images and an automated technique for detecting intensity oscillations using multi-scale wavelet analysis were developed. Large areas of the images covered by the Moon and the upper corona were scanned for oscillations and the statistical properties of the atmospheric effects were determined. The a Trous wavelet transform was used for noise reduction and Monte Carlo analysis as a significance test of the detections. The effectiveness of those techniques is discussed in detail.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs) are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.