30 resultados para PVC, cross-linked, sandwich, composites, foam
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Conductive ionic liquid -poly(ethylene glycol) (IL-PEG) gels have been prepared by gelation of the hydrophobic ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [(C(6)mim] [NTf2]) by the cross-linking reaction of disuccinimidylpropyl PEG monomers with four-arm tetraamine PEG cross-linkers. This is the first time that a crosslinked PEG matrix, such as this, has been used to gel nonaqueous solvents. Initial studies screening other ionic liquids as solvents indicate that the gelation of the ionic liquid is both cation and anion dependent with smaller, coordinating cations disrupting or preventing gel formation.
Resumo:
Poly(vinyl alcohol)-borate complexes were evaluated as a potentially novel drug delivery platform suitable for in vivo use in photodynamic antimicrobial chemotherapy (PACT) of wound infections. An optimised formulation (8.0%w/w PVA, 2.0% w/w borax) was loaded with 1.0 mg ml(-1) of the photosensitisers Methylene Blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Both drugs were released to yield receiver compartment concentrations (>5.0 mu g ml(-1)) found to be phototoxic to both planktonic and bicifilm-grown methicillin-resistant Staphylococcus aureus (MRSA), a common cause of wound infections in hospitals. Newborn calf serum, used to simulate the conditions prevalent in an exuding wound, did not adversely affect the properties of the hydrogels and had no significant effect on the rate of TMP-mediated photodynamic kill of MRSA, despite appreciably reducing the fluence rate of incident light. However, MB-mediated photodynamic kill of MRSA was significantly reduced in the presence of calf serum and when the clinical isolate was grown in a biofilm. Results support the contention that delivery of MB or TMP using gel-type vehicles as part of PACT could make a contribution to the photodynamic eradication of MRSA from infected wounds. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A hydrolyzable dimethacrylate cross-linker, 2-methyl-2,4-pentanediol dimethacrylate (MPDMA), was synhesized by the reaction of 2-methyl-2,4-pentanediol and methacryloyl chloride in the presence of triethylamine. This cross-linker was used to prepare a neat cross-linker network and three cross-linked star polymer model networks (CSPMNs) of methyl methacrylate (MMA), as well as star-shaped polymers of MMA, by group transfer polymerization (GTP). Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors, and demonstrated the increase in molecular weight (MW) on each successive addition of cross-linker or monomer. Characterization of the star polymers by static light scattering (SLS) in THF showed that star polymers with MPDMA cores bear a relatively small number of arms, between 7 and 35. All star polymers and polymer networks containing the MPDMA cross-linker were hydrolyzed at room temperature in neat trifluoroacetic acid to yield lower-MW products.
Resumo:
An acid-labile dimethacrylate cross-linker, dimethyldi(methacryloyloxy-l-ethoxy)silane (DMDMAES), was synthesized by the reaction of 2-hydroxyethyl methacrylate (HEMA) and dichlorodimethylsilane in the presence of triethylamine. Group transfer polymerization (GTP) was employed to use this cross-linker in the preparation of six hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), two star-shaped polymers of MMA, and two cross-linked star polymer model networks (CSPMNs) of MMA. A nonhydrolyzable CSPMN of MMA, based on a stable cross-linker, was also synthesized. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors and demonstrated the increase in molecular weight (MW) upon each successive addition of cross-linker or monomer. Characterization by static light scattering (SLS) and GPC showed that star polymers with DMDMAES cores bear a relatively small number of arms, around 7. All star polymers and polymer networks were hydrolyzed using hydrochloric acid in THF. While the MWs of the products from the hydrolysis of the star polymers, the neat cross-linker network, and the randomly cross-linked network were as expected, those from the CSPMNs were of a much higher than expected MW, indicating extensive star-star coupling.
Resumo:
Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.
Resumo:
A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.
Resumo:
An acid-labile dimethaerylate acetal cross-linker,di(methacryloyloxy-l-ethoxy)methane(DMOEM), was synthesized by the reaction of 2-hydroxyethyl methacrylate and paraformaldehyde using p-toluenesulfonic acid and toluene as catalyst and solvent, respectively. Group transfer polymerization was employed to use this cross-linker in the preparation of nine hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), and seven star-shaped polymers of MMA. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions of the linear polymer precursors to the stars and demonstrated the increase in molecular weight upon the addition of cross-linker for the formation of star-shaped polymers. Characterization of the star polymers in THF using static light scattering and GPC showed that the molecular weights and the number of arms of each star polymer increased with an increase in the molar ratio of cross-linker to initiator and with a decrease in the molar ratio of monomer to initiator. The star polymers with DMOEM cores bore a smaller number of arms than those cross-linked with the non-hydrolyzable commercial cross-linker ethylene glycol dimethacrylate due to the bulkier structure of DMOEM. All DMOEM-containing polymer networks and star polymers were completely hydrolyzed within 48 h using hydrochloric acid in THF.
Resumo:
A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode.
Resumo:
Novel surface-modified hydrogel materials have been prepared by binding charged porphyrins TMPyP (tetrakis-(4-N-methylpyridyl)porphyrin) and TPPS (tetrakis(4-sulfonatophenyl)porphyrin) to copolymers of HEMA (2-hydroxyethyl methacrylate) with either MAA (methacrylic acid) or DEAEMA (2-(diethylamino)ethylmethacrylate). The charged hydrogels display strong electrostatic interactions with the appropriate cationic or anionic porphyrins to give materials which are intended to be used to generate cytotoxic singlet oxygen (1O2) on photoexcitation and can therefore be used to reduce postoperative infection of the intraocular hydrogel-based replacement lenses that are used in cataract surgery. The UV/vis spectra of TMPyP in MAA:HEMA copolymers showed a small shift in the Soret band and a change from single exponential (161 Ã?�Ã?Âs) triplet decay lifetime in solution to a decay that could be fitted to a biexponential fit with two approximately equal components with Ã?�Ã?´ ) 350 and 1300 Ã?�Ã?Âs. O2 bubbling reduced the decay to a dominant (90%) component with a much reduced lifetime of 3 Ã?�Ã?Âs and a minor, longer lived (20 Ã?�Ã?Âs) component. With D2O solvent the 1O2 lifetime was measured by 1270 nm fluorescence as 35 Ã?�Ã?Âs in MAA:HEMA, compared to 67 Ã?�Ã?Âs in solution, although absorbance-matched samples showed similar yield of 1O2 in the polymers and in aqueous solution. In contrast to the minor perturbation in photophysical properties caused by binding TMPyP to MAA:HEMA, TPPS binding to DEAEMA:HEMA copolymers profoundly changed the 1O2 generating ability of the TPPS. In N2-bubbled samples, the polymer-bound TPPS behaved in a similar manner to TMPyP in its copolymer host; however, O2 bubbling had only a very small effect on the triplet lifetime and no 1O2 generation could be detected. The difference in behavior may be linked to differences in binding in the two systems. With TMPyP in MAA:HEMA, confocal fluorescence microscopy showed significant penetration of the porphyrin into the core of the polymer film samples (>150 Ã?�Ã?Âm). However, for TPPS in DEAEMA:HEMA copolymers, although the porphyrin bound much more readily to the polymer, it remained localized in the first 20 Ã?�Ã?Âm, even in heavily loaded samples. It is possible that the resulting high concentration of TPPS may have cross-linked the hydrogels to such an extent that it significantly reduced the solubility and/or diffusion rate of oxygen into the doped polymers. This effect is significant since it demonstrates that even simple electrostatic binding of charged porphyrins to hydrogels can have an unexpectedly large effect on the properties of the system as a whole. In this case it makes the apparently promising TPPS/DEAEMA:HEMA system a poor candidate for clinical application as a postoperative antibacterial treatment for intraocular lenses while the apparently equivalent cationic system TMPyP/MAA:HEMA displays all the required properties.
Resumo:
Conducting polymers suffer from folds and kinks because of random nucleation and solvation of a free radical cation to yield a cross linked/disordered polymer and therefore a solvent free electrochemical polymerization in a room temperature melt medium is adopted to yield a high degree polymer with high electronic conductivity. Electropolymerization of thiophene was performed on platinum/ITO substrates using cyclic voltametry or galvenostatic mode in chloroaluminate room temperature melt medium to obtain a reddish brown free standing film which can be peeled off from the electrode surface after a minimum of 10 cycles. The conductivity was found to be around 102 S/cm. The degree of polymerization was calculated to be around 44 from IR studies. A layered structure supportive for high degree of polymerization was witnessed from potential step technique. From UV spectra the charge carriers were found to be bipolarons. The morphology of the film was found to be crystalline from SEM and XRD studies. Capacitative impedance properties for doped samples were interpreted from impedance spectroscopy.
Resumo:
Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Resumo:
Several novel phosphoramidites have been prepared by reaction of the primary amines para-vinylaniline, ortho-anisidine, 2-methoxyphenyl(4-vinylbenzyl)amine, 8-aminoquinoline and 3-vinyl-8-aminoquinoline with (S)-1,1'-bi-2-naphthylchlorophosphite, in the presence of base. Rhodium(l) complexes of these phosphoramidites catalyse the asymmetric hydrogenation of dimethylitaconate and dehydroamino acids and esters giving ee values up to 95%. Soluble non-cross linked polymers of the para-vinylaniline and 3-vinyl-8-aminoquinoline-based phosphoramidites have been prepared by free radical co-polymerisation with styrene in the presence of AIBN as initiator. The corresponding [Rh(COD)](+) complexes serve as recyclable catalysts for the asymmetric hydrogenation dimethylitaconate and dehydroamino acids and esters to give ee values up to 80%. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Polyol sugars, displaying a plurality Of hydroxyl groups, were shown to modulate tetra hydroxyborate (borate) cross-linking in lidocaine hydrochloride containing poly(vinyl alcohol) scini-solid hydrogels. Without polyol, demixing of borate cross-linked PVA hydrogels into two distinct phases was noticeable upon lidocaine hydrochloride addition, preventing further use as a topical System. D-Mannitol incorporation was found to be particularly suitable in cicumventing network constriction induced by ionic and pH effects upon adding the hydrochloride salt of lidocaine. A test formulation (4% w/v lidocaine HCl, 2% W/V D-mannitol, 10% w/v PVA and 2.5%, w/v THB) was shown to constitute an effective delivery system, which was characterised by an initial burst release and a drug release mechanism dependent on temperature, changing from a diffusion-controlled system to one with the properties of a reservoir system. The novel flow properties and innocuous adhesion of PVA-tetrahydroxyborate hydrogels Support their application for drug delivery to exposed epithelial surfaces, Such as lacerated wounds. Furthermore, addition of a polyol, such as mannitol, allows incorporation of soluble salt forms of active therapeutic agents by modulation of cross-linking density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.