3 resultados para PPH
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The monoanionic ligand [C6H3(CH(2)NMe(2))(2)-2,6](-), a potentially terdentate N,C,N bonding system, has been employed to synthesize a series of new ruthenium(II) complexes [Ru{C6H3(CH(2)NMe(2))(2)-2,6}X(L)] (L = PPh(3) X = Cl (2a), I (2b); L = norbornadiene (nbd), X = Cl (4), eta(1)-OSO2CF3 (5)) and [Ru{C6H3(CH(2)NMe(2))(2)-2,6}(2,2':6',2 ''-terpyridine)]Cl (3). X-ray crystal structures of 2b and 3-5 have been determined, in which the N,C,N coordination geometry with respect to the metal center is found to differ considerably. In each complex the aryldiamine ligand is terdentate, eta(3)-N,C,N-bonded as a six electron donor system. However, depending on the other ligands in the Ru(II) coordination sphere, this ligand demonstrates considerable flexibility in adopting coordination geometries which range from meridional in 3 through pseudomeridional in 2b to pseudofacial in 4 and 5. In the structures of 4 and 5 significant distortions of the aryl ring, involving bending of the six-membered ring into a boatlike conformation, are found. The different combinations of the N,C,N ligand with sets of other ligands lead to a range of metal geometries, i.e. square pyramidal in 2b, octahedral in 3, and bicapped tetrahedral in 4 and 5.
Resumo:
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.
Resumo:
Raman spectroelectrochemical and X-ray crystallographic studies have been made for the binuclear copper(I) complex, [(Ph(3)P)(2)Cu(dpq)Cu(PPh(3))(2)][BF4](2), where dpq is the bridging ligand 2,3-di(2-pyridyl)quinoxaline. The X-ray data show that the pyridine rings are twisted out of plane with respect to the quinoxaline ring which is itself non-planar. The UV/VIS spectra of the metal-to-ligand charge-transfer excited state and those of the electrochemically reduced complex are similar. The resonance-Raman spectrum of the latter species exhibits little change in the frequency of the pyridinylquinoxaline inter-ring C-C bond stretching mode, compared to the ground electronic state. This suggests minimum change in the inter-ring C-C bond order in the electrochemically or charge-transfer generated radical anion. Semiempirical molecular-orbital calculations on both the neutral dpq and radical anion show two near-degenerate lowest unoccupied orbitals in the neutral species. One is strongly bonding across the inter-ring C-C bond while the other is almost nun-bonding. The Raman data suggest that it is this latter orbital which is populated in the transient and electrochemical experiments.