12 resultados para POLYAMIDE-6

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Injection-molded short- and long-glass fiber/polyamide 6,6 composites were subjected to tensile tests. To measure the effectiveness of the fibers in reinforcing the composites, a computational approach was employed to compute the fiber– matrix ISS, orientation factor, reinforcement efficiency, tensile-, and fiber length-related properties. Although the LFCs showed great improvement in fiber characteristics compared to the SFCs, enhancement in tensile properties was small, which is believed to be due to the larger fiber diameter. Kelly–Tyson model provides good approximation for the computation of ISS and tensile-related properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high-density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle-length, randomly oriented bristles (MRB), or non-oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non-fibrous composite. It was concluded that the in-situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. Copyright © 2011 Society of Plastics Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, due to its outstanding properties, has become the topic of much research activity in recent years. Much of that work has been on a laboratory scale however, if we are to introduce graphene into real product applications it is necessary to examine how the material behaves under industrial processing conditions. In this paper the melt processing of polyamide 6/graphene nanoplatelet composites via twin screw extrusion is investigated and structure–property relationships are examined for mechanical and electrical properties. Graphene nanoplatelets (GNPs) with two aspect ratios (700 and 1000) were used in order to examine the influence of particle dimensions on composite properties. It was found that the introduction of GNPs had a nucleating effect on polyamide 6 (PA6) crystallization and substantially increased crystallinity by up to 120% for a 20% loading in PA6. A small increase in crystallinity was observed when extruder screw speed increased from 50 rpm to 200 rpm which could be attributed to better dispersion and more nucleation sites for crystallization. A maximum enhancement of 412% in Young's modulus was achieved at 20 wt% loading of GNPs. This is the highest reported enhancement in modulus achieved to date for a melt mixed thermoplastic/GNPs composite. A further result of importance here is that the modulus continued to increase as the loading of GNPs increased even at 20 wt% loading and results are in excellent agreement with theoretical predictions for modulus enhancement. Electrical percolation was achieved between 10–15 wt% loading for both aspect ratios of GNPs with an increase in conductivity of approximately 6 orders of magnitude compared to the unfilled PA6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the processing and characterization of Polyamide 6 (PA6) / graphite nanoplatelets
(GNPs) composites is reported. PA6/GNPs composites were prepared by melt-mixing using an
industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used
that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of
GNPs type (xGnP® M-5 and xGnP® C-500), GNPs content, and extruder screw speed on the bulk
properties of the PA6/GNPs nanocomposites were investigated. Results show a considerable
improvement in the thermal and mechanical properties of PA6/GNPs composites, as compared with
the unfilled PA6 polymer. An increase in crystallinity (%Xc) with increasing GNPs content, and a
change in shape of the crystallization exotherms (broadening) and melting endotherms, both suggest a
change in the crystal type and perfection. An increase in tensile modulus of as much as 376% and
412% was observed for PA6/M-5 xGnP® and PA6/C-500 xGnP® composites, respectively, at filler
contents of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the
reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The rheological response
of the composite resembles that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the
rheological data indicates that a percolation threshold was reached at GNPs contents of between 10–
15wt%. The electrical conductivity of the composite also increased with increasing GNPs content,
with an addition of 15wt% GNPs resulting in a 6 order-of-magnitude increase in conductivity. The
electrical percolation thresholds of all composites were between 10–15wt%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the processing and characterization of Polyamide 6 (PA6) nanocomposites containing graphite nanoplatelets (GNPs) is reported. PA6 nanocomposites were prepared by melt-mixing using an industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of nano-filler type (xGnPTM M-5 and xGnPTM C-500), nano-filler content, and extruder screw speed on the bulk properties of the PA6 nanocomposites were investigated. The crystalline structures of PA6 nanocomposites are related to thermal treatment, stress history and the presence of moisture and nanofillers. DSC, Raman and XRD studies show an increase in crystallinity with increasing GNP content and a phase transformation between α-form to γ-form crystals as a result of the heterophase nucleation effect. The effect of uniaxial stretching on PA6 nanocomposites was investigated by drawing specimens heated at temperatures below the melting temperature. DSC and Raman studies on the drawn samples show an increase in yield stress as the GNP content increases due to the strain induced crystallization and γ—β transition during stretching. The rheological response of the nanocomposites resemble that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the rheological data indicates that a percolation threshold was reached at GNP contents of between 10–15wt%. An increase in tensile modulus of as much as 412% was observed for PA6/C-500 xGnPTM composites, at a filler content of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The electrical conductivity of the composite also increased with increasing GNP content, with an addition of 15wt% GNP resulting in a 6 order-of-magnitude increase in conductivity. The effects of uniaxial-drawing and the inclusion of multiple nano-filler varieties on the electrical and mechanical properties are currently under investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.