20 resultados para PLANT INTERACTIONS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However 'change' is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature, all of which are correlated with productivity. Here we argue that predicted scenarios of global change will result in increased plant productivity. We model three scenarios of change using simple Lotka-Volterra dynamics, which explore how a global change in productivity might affect the strength of local species interactions and detail the consequences for community and ecosystem level stability. Our results indicate that (i) at local scales the average population size of consumers may decline because of poor quality food resources, (ii) that the strength of species interactions at equilibrium may become weaker because of reduced population size, and (iii) that species populations may become more variable and may take longer to recover from environmental or anthropogenic disturbances. At local scales interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionatty important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We examine how such local patterns might be affected given various scenarios of 'global change' and discuss the consequences for community stability and ecosystem functioning. (C) 2004 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions: 1. Indicator values, such as those of Ellenberg, for different environmental factors are seen as independent. We tested for the presence of interactions between environmental factors ( soil moisture and reaction) to see if this assumption is simplistic. 2. How close are Ellenberg indicator values (IVs) related to the observed optima of species response curves in an area peripheral to those where they have been previously employed and 3. Can the inclusion of bryophytes add to the utility of IVs?

Location: South Uist, Outer Hebrides, Scotland, UK.

Methods: Two grids (ca. 2000 m x 2000 m) were sampled at 50-m intervals across the transition from machair to upland communities covering an orthogonal gradient of both soil pH ( reaction) and soil moisture content. Percentage cover data for vascular plants, bryophytes and lichens were recorded, along with pH and moisture content of the underlying sand/soil/peat. Reaction optima, derived from species response curves calculated using HOF models, were compared between wet and dry sites, and moisture optima between acidic and basic samples. Optima for the whole data set were compared to Ellenberg IVs to assess their performance in this area, with and without the inclusion of bryophytes.

Results: A number of species showed substantially different pH optima at high and low soil moisture contents (18% of those tested) and different soil moisture optima at high and low pH (49%). For a number of species the IVs were poor predictors of their actual distribution across the sampled area. Bryophytes were poor at explaining local variation in the environmental factors and also their inclusion with vascular plants negatively affected the strength of relationships.

Conclusions: A substantial number of species showed an interaction between soil moisture and reaction in determining their optima on the two respective gradients. It should be borne in mind that IVs such as Ellenberg's may not be independent of one another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycorrhizal associations, including ericoid, arbuscular and ecto-mycorrhizas, are found colonising highly metal contaminated soils. How do mycorrhizal fungi achieve metal resistance, and does this metal resistance confer enhanced metal resistance to plant symbionts? These are the questions explored in this review by considering the mechanistic basis of mycorrhizal adaptation to metal cations. Recent molecular and physiological studies are discussed. The review reappraises what constitutes metal resistance in the context of mycorrhizal associations and sets out the constitutive and adaptive mechanisms available for mycorrhizas to adapt to contaminated sites. The only direct evidence of mycorrhizal adaptation to metal cation pollutants is the exudation of organic acids to alter pollutant availability in the rhizosphere. This is not to say that other mechanism of adaptation do not exist, but conclusive evidence of adaptive mechanisms of tolerance are lacking. For constitutive mechanisms of resistance, there is much more evidence, and mycorrhizas possess the same constitutive mechanisms for dealing with metal contaminants as other organisms. Rhizosphere chemistry is critical to understanding the interactions of mycorrhizas with polluted soils. Soil pH, mineral weathering, pollutant precipitation with plant excreted organic acids all may have a key role in constitutive and adaptive tolerance of mycorrhizal associations present on contaminated sites. The responses of mycorrhizal fungi to toxic metal cations are diverse. This, linked to the fact that mycorrhizal diversity is normally high, even on highly contaminated sites, suggests that this diversity may have a significant role in colonisation of contaminated sites by mycorrhizas. That is, the environment selects for the fungal community that can best cope with the environment, so having diverse physiological attributes will enable colonisation of a wide range of metal contaminated micro-habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.