5 resultados para PICHIA GUILLIERMONDII
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Cystic fibrosis (CF) patients may suffer increased morbidity and mortality through colonisation, allergy and invasive infection from fungi. The black yeast, Exophiala dermatitidis (synonym Wangiella dermatitidis) has been found with increasing frequency in sputum specimens of CF patients, with reported isolation rates ranging from 1.1 to 15.7%. At present, no diagnostic PCR exists to aid with the clinical laboratory detection and identification of this organism. A novel species-specific PCR-based assay was developed for the detection of E. dermatitidis, based on employment of rDNA operons and interspacer (ITS) regions between these rDNA operons. Two novel primers, (designated ExdF & ExdR) were designed in silico with the aid of computer-aided alignment software and with the alignment of multiple species of Exophiala, as well as with other commonly described yeasts and filamentous fungi within CF sputum, including Candida. Aspergillus and Scedosporium. An amplicon of approximately 455 by was generated, spanning the partial ITS I region - the complete 5.8S rDNA region - partial ITS2 region, employing ExdF (forward primer [16-mer], 5'-CCG CCT ATT CAG GTC C-3' and ExdR (reverse primer [16-mer], 5'-TCT CTC CCA CTC CCG C-3', was employed and optimised on extracted genomic DNA from a well characterised culture of E. dermatitidis, as well as with high quality genomic DNA template from a further 16 unrelated fungi, including Candida albicans, C. dubliniensis, C. parapsilosis, C. glabrata, Scedosporium apiospermum, Penicillium sp., Aspergillus fumigatus, Aspergillus versicolor, Pichia guilliermondii, Rhodotorula sp., Trichosporon sp., Aureobasidium pullulans, Fusarium sp., Mucor hiemalis, Bionectria ochroleuca, Gibberella pulicaris. Results demonstrated that only DNA from E. dermatitidis gave an amplification product of the expected sire, whilst none of the other fungi were amplifiable. Subsequent employment of this primer pair detected this yeast from mycological cultures from 2/50 (4%) adult CF patients. These two patients were the only patients who were previously shown to have a cultural history of E. dermatitidis from their sputum. E. dermatitidis is a slow-growing fungus, which usually takes up to two weeks to culture in the microbiology laboratory and therefore is slow to detect conventionally, with the risk of bacterial overgrowth from common co-habiting pan- and multiresistant bacterial pathogens from sputum. namely Pseudomonas aeruginosa and Burkholderia cepacia complex organisms, hence this species-specific PCR assay may help detect this organism from CF sputum more specifically and rapidly. Overall, employment of this novel assay nay help in the understanding of the occurrence. aetiology and epidemiology of E. dermatitidis, as an emerging fungal agent in patients with CF. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Resumo:
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.
Resumo:
Objectives: To describe the species distribution and antifungal susceptibility trends for documented episodes of candidemia at the Royal Hospitals, Belfast, 2001-2006. Methods: Laboratory-based retrospective observational study of all episodes of candidemia. Results: There were 151 episodes of candidemia. The species recovered were: 96 C. albicans; 26 C. glabrata; 18 C. parapsilosis; five C. tropicalis; four C. guilliermondii; one C. famata and one C. dubliniensis. We separated the data into two periods 2001-2003 and 2004-2006; contrary to the findings of other investigators, there was a notable trends toward increasing frequency of C. albicans and decreasing frequency of non-albicans species over time. Although the proportion of C. albicans, C. parapsilosis and C. tropicalis isolates susceptible to fluconazole was unchanged over time, a trend of decreased susceptibility of C. glabrata to fluconazole was noted over the six-year period. Overall, 73% and 7.7% of C. glabrata isolates had susceptible-dose-dependent and resistant phenotypes, respectively. The percentage of C. glabrata isolates susceptible to fluconazole (MIC
Resumo:
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Resumo:
Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.