13 resultados para PHOTORECEPTOR CELLS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied both eyes of a 66-year-old man with retinal degeneration and oat cell carcinoma of the bronchus. Retinal degeneration was most marked peripheral to the parafovea where photoreceptor cells and their outer segments were absent. Within the parafovea, photoreceptor cells remained but rod outer segments were absent and cone outer segments were fragmented and disorganized. The retinal pigment epithelium contained many immature melanin granules within melanolysosomes, suggesting abnormal melanin synthesis and resorption. We suggest that a pharmacologically active substance resembling a hormone produced by the tumor increased melanin synthesis in the pigment epithelium and that the increased melanin content in these cells compromised their ability to phagocytose and maintain normal turnover of photoreceptor outer segments. We believe these changes led to photoreceptor outer segment loss and subsequent degeneration of the photoreceptor cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.

METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.

RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.

CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study has examined the localisation and receptor-binding of the endothelins in retina and choroid of human and rat origin. Immunoreactivity to anti-ET1 and anti-ET3 was investigated in trypsin digests, frozen sections and ultrathin sections using immunocytochemistry and immunogold labelling techniques. In addition, receptor binding of 125I-ET1 and 125I-ET3 was visualised and quantified using autoradiography and image analysis. Intense immunoreactivity to anti-ET1 and anti-ET3 was observed in the photoreceptor inner segments and in the outer plexiform layer (OPL) of human and rat retina. Ultrastructural localisation using immunogold labelling confirmed the presence of ET1 and ET3 in the photoreceptor cells. In retinal vascular digests, ET1 was visualised in the arteries, arterioles and at the pre-arteriolar sphincters, however, immunoreactivity to anti-ET3 was absent in the retinal vasculature. Both ETA and ETB-type receptor binding sites to 125I-ET1 and 125I-ET3 were detected in the vascular smooth muscle of choroidal and retinal vessels with the former being predominant. Extravascular binding sites of the ETB-type were found in the ganglion cell layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: There have been few histological or ultrastructural studies of the outer retina and choriocapillaris following panretinal photocoagulation therapy. This investigation examines the long-term morphological effects of panretinal photocoagulation in two patients with type II diabetes who had received laser treatment more than 6 months prior to death.

METHODS: Regions of retina and choroid from each patient were fixed in 2.5% glutaraldehyde, dissected out and examined using light microscopy and scanning and transmission electron microscopy.

RESULTS: After removing the neural retina, scanning electron microscopy of non-photocoagulated areas of the eye cups revealed normal cobblestone-like retinal pigment epithelial (RPE) cells. Regions with laser scars showed little RPE infiltration into the scar area, although large rounded cells often appeared in isolation within these areas. Sections of the retina and choroid in burn regions showed a complete absence of the outer nuclear layer and photoreceptor cells, with the inner retinal layers lying in close apposition to Bruch's membrane. Non-photocoagulated regions of the retina and choroid appeared normal in terms of both cell number and cell distribution. The RPE layer was absent within burn scars but many RPE-like cells appeared markedly hypertrophic at the edges of these regions. Bruch's membrane always remained intact, although the underlying choriocapillaris was clearly disrupted at the point of photocoagulation burns, appearing largely fibrosed and non-perfused. Occasional choroidal capillaries occurring in this region were typically small in profile and had plump non-fenestrated endothelium.

CONCLUSIONS: This study outlines retinal and choroidal cell responses to panretinal photocoagulation in diabetic patients and demonstrates an apparent reduction in the capacity of these tissues to repair laser damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combined effect of STZ-diabetes and ionising radiation on the rat retina was investigated. Wistar rats, which had been diabetic for 6 months, were irradiated with a single dose of x-rays (1500 cGy) and the ultrastructural effects evaluated at 4-10 mths post-irradiation. At 4 months post-irradiation, the outer nuclear layer of the retina was greatly reduced in thickness and the photoreceptor outer segments were disorganised and reduced in length. In addition, the nerve fibre layer contained many cytoid bodies and there were many redundant basement membrane tubes throughout the inner retina. By 6 months post-irradiation, the photoreceptor cells were virtually absent, bringing the external limiting membrane into close apposition to the RPE. Throughout large areas of the outer retina, RPE cells were hypertrophic and some had proliferated into the inner retina. In many regions, proliferating retinal capillaries were observed within the RPE layer, and at 8 months post-irradiation, some vessels extended into the inner retina accompanied by RPE cells. At 10 months post-irradiation, the RPE was atrophic and degenerative with retinal glial cells coming into contact with Bruch's membrane. In some areas, the glia which had breached Bruch's membrane had invaded the underlying choroid. Where glial cells contacted the choriocapillaries, the vessels assumed the appearance of retinal vessels with plump endothelia and no fenestrations. This study has described a progressive inner retinal ischemia, with cytoid bodies, capillary non-perfusion and general atrophy of the inner retina intensifying markedly with increasing post-irradiation time.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study documents the ultrastructural findings in a case of solar retinopathy, 6 days after sungazing. A malignant melanoma of the choroid was diagnosed in a 65-year-old man. On fundoscopy, the macula was normal. The patient agreed to stare at the sun prior to enucleation. A typical solar retinopathy developed, characterised by a small, reddish, sharply circumscribed depression in the foveal area. Structural examination of the fovea and parafovea revealed a spectrum of cone and rod outer segment changes including vesiculation and fragmentation of the photoreceptor lamellae and the presence of discrete 100-120 nm whorls within the disc membranes. Many photoreceptor cells, particularly the parafoveal rods, also demonstrated mitochondrial swelling and nuclear pyknosis. Scattered retinal pigment epithelial cells in the fovea and parafovea showed a degeneration characterised by loss of plasma membrane specialisations, swelling of the smooth endoplasmic reticulum and changes in the fine structure of the lipofuscin granules. The good visual prognosis in solar retinopathy was attributed to the resistance of the foveal cone cells to photochemical damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes ultrastructural changes in the pigmented hooded Lister rat retina, 3-12 months following X-irradiation with single doses of between 200 and 2000 cGy. The extreme radiosensitivity of the photoreceptor cells was underlined by the continued manifestation of fine structural changes and cell death up to 6 months post-radiation in animals receiving doses above 500 cGy. The retinal pigment epithelial (RPE) cells were more radioresistant than photoreceptors and RPE cell loss was only observed at doses of more than 1500 cGy. One year after irradiation with 1500 cGy the retinal vasculature showed capillary occlusion with some evidence of recanalisation. Telangiectasia was observed in the large retinal veins. Although the inner retinal neurones and glial cells showed no evidence of direct radiation damage, the nerve fibre layer adjacent to occluded retinal vessels demonstrated ultrastructural evidence of ischaemic neuropathy and retinal oedema. At doses above 1500 cGy the choriocapillaris showed platelet aggregation and capillary loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study Lister rats were given doses of X-rays ranging from 200-2,000 Rads to the retina of one eye, sacrificed at various time intervals between one hour and one month later and the irradiated eye processed for electron microscopy. The rod photoreceptor cells were by far the most radiosensitive cells in the retina, their outer segments showing distinctive membrane damage at one hour after 200 Rads of X-rays. Photoreceptor cell death was not seen at doses less than 1,000 Rads in the time period of the experiment. The retinal pigment epithelial (RPE) cells showed damage in the form of mitochondrial swelling but only in doses over 500 Rads. Retinal pigment epithelial cell loss did not occur under 2,000 Rads. The inner retinal neurones, glial elements and the retinal vasculature did not show any ill effects in the time period of this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied an eye from a 73-year-old man with a sporadic type of retinal cone degeneration and choroidal melanoma. Histologic and ultrastructural studies of the nasal retina unaffected by the choroidal melanoma showed alterations at the outer retina predominantly involving the photoreceptors and retinal pigment epithelium. A wide spectrum of pathologic changes were observed, ranging from near normal retina showing only photoreceptor outer segment disease (distortion and kinking) to grossly pathologic regions where photoreceptor cell bodies were sparse and their outer segments absent. The retinal pigment epithelium in minimally affected regions of the retina showed an increased proportion of the melanin complement of the cell within complex granules. In severe disease, many cells showed only giant complex granules with no free melanin. Retinal pigment epithelial cell migration and relocation around blood vessels was also noted in severe disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The pig eye is similar to the human eye in terms of anatomy, vasculature, and photoreceptor distribution, and therefore provides an attractive animal model for research into retinal disease. The purpose of this study was to characterize retinal histology in the developing and mature pig retina using antibodies to well established retinal cell markers commonly used in rodents.

METHODS: Eyes were enucleated from fetuses in the 9th week of gestation, 1 week old piglets and 6 months old adult animals. Eyeglobes were fixed and cryosectioned. A panel of antibodies to well established retinal markers was employed for immunohistochemistry. Fluorescently labeled secondary antibodies were used for signal detection, and images were acquired by confocal microscopy. Mouse retina at postnatal day (P) 5 was used as a reference for this study to compare progression of histogenesis. Most of the primary antibodies have previously been used on mouse tissue.

RESULTS: Most of the studied markers were detected in midgestation pig retina, and the majority had a similar distribution in pig as in P5 mouse retina. However, rhodopsin immunolabeling was detected in pig retina at midgestation but not in P5 mouse retina. Contrary to findings in all rodents, horizontal cells were Islet1-positive and cones were calbindin-immunoreactive in pig retina, as has also been shown for the primate retina. Recoverin and rhodopsin immunolabeling revealed an increase in the length of photoreceptor segments in 6 months, compared to 1 week old animals.

CONCLUSIONS: Comparison with the published data on human retina revealed similar marker distribution and histogenesis progression in the pig and human retina, supporting the pig as a valuable animal model for studies on retinal disease and repair. Furthermore, this study provides information about the dynamics of retinal histogenesis in the pig and validates a panel of antibodies that reliably detects developing and mature retinal cell phenotypes in the pig retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina. METHODS: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm. RESULTS: Raman spectra of each of the photoreceptor inner and outer segments (PIS, POS) and of the outer nuclear layer (ONL) of the retina acquired at 785 nm were dominated by vibrational features characteristic of proteins and lipids. There was a clear difference between the inner and outer domains in the spectroscopic regions, amide I and III, known to be sensitive to protein conformation. The spectra recorded with 633 nm excitation mirrored those observed at 785 nm excitation for the amide I region, but with an additional pattern of bands in the spectra of the PIS region, attributed to cytochrome c. The same features were even more enhanced in spectra recorded with 514 nm excitation. A significant nucleotide contribution was observed in the spectra recorded for the ONL at all three excitation wavelengths. A Raman map was constructed of the major spectral components found in the retinal outer segments, as predicted by principal component analysis of the data acquired using 633 nm excitation. Comparison of the Raman map with its histological counterpart revealed a strong correlation between the two images. CONCLUSIONS: It has been demonstrated that Raman spectroscopy offers a unique insight into the biochemical composition of the light-sensing cells of the retina following the application of standard histological protocols. The present study points to the considerable promise of Raman microscopy as a component-specific probe of retinal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: We have shown previously that macrophages/microglia accumulate in the subretinal space and express CD68 and Arginase-1 in the aging eye. Subretinal macrophages are in close contact with retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may play an important role in regulating macrophage/microglial phenotype and function. The aim of this study was to investigate the effect of RPE cells on the phenotype and function of bone marrow–derived macrophages (BM-DMs).
Methods: BM-DM from C57BL/6J mice were cultured in DMEM supplemented with 20%L929 cell supernatant for 5 days. The phenotype of BM-DMs was confirmed by flow cytometry as CD11b+F4/80+. Primary RPE cells were cultured from C57BL/6J mice and confirmed by RPE65 and cytokeratin staining. BMDMs were co-cultured with different types of RPE cells (healthy, oxidized, and apoptotic RPE) and then isolated from the co-culture system for phenotypic and functional assays.
Results: Co-culture of BM-DMs with RPE cells results in a time-dependent down-regulation of MHC-II expression and the generation of CD11b+F4/80+Ly6G+ myeloid-derived suppressor cells (MDSC). qRT-PCR analysis showed that RPE-induced MDSCs expressed high levels of IL-6, IL-1β, and Arginase-1, but lower levels of IL-12p40 and TNF-a compared to naïve BM-DMs. The expression levels of iNOS, TGF-β and Ym1 did not differ 207 between naive BMDMs and RPE-induced MDSCs. Furthermore, functional studies showed that these cells had reduced phagocytic activity and lower ability to stimulate T cell activation and proliferation. When RPE cells were pre-treated with oxidized photoreceptor outer segments before co-culturing with BMDMs, the expression of IL-1β and IL-6 in BMDMs was increased whereas the expression of Arginase-1 was decreased. 
Conclusion: Our results suggest that healthy RPE cells can convert BMDMs into myeloid-derived suppressor cells under in vitro culture conditions, RPE-induced myeloid-derived suppressor cells are CD11b+F4/80+Ly6G+MHCIIlowIL6+IL1b+Arg-1+. The ability of RPE cells is reduced when suffering from oxidative insults.