5 resultados para PFU

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential application of phage therapy for the control of bacterial biofilms has received increasing attention as resistance to conventional antibiotic agents continues to increase. The present study identifies antimicrobial synergy between bacteriophage T4 and a conventional antibiotic, cefotaxime, via standard plaque assay and, importantly, in the in vitro eradication of biofilms of the T4 host strain Escherichia coli 11303. Phage-antibiotic synergy (PAS) is defined as the phenomenon whereby sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacteria's production of virulent phage. Increasing sub-lethal concentrations of cefotaxime resulted in an observed increase in T4 plaque size and T4 concentration. The application of PAS to the T4 one-step growth curve also resulted in an increased burst size and reduced latent period. Combinations of T4 bacteriophage and cefotaxime significantly enhanced the eradication of bacterial biofilms when compared to treatment with cefotaxime alone. The addition of medium (10(4) PFU mL(-1) ) and high (10(7) PFU mL(-1) ) phage titres reduced the minimum biofilm eradication concentration value of cefotaxime against E. coli ATCC 11303 biofilms from 256 to 128 and 32 µg mL(-1) , respectively. Although further investigation is needed to confirm PAS, this study demonstrates, for the first time, that synergy between bacteriophage and conventional antibiotics can significantly improve biofilm control in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A groundwater programme monitoring flow and quality of a potable water spring in a slum district in Kampala, Uganda revealed that although latrines acted as the principal means of organic waste disposal for the 1000 plus people living in the spring’s catchment, levels of faecal indicator bacteria (TVC 45 Deg C) in spring discharge remained at or below detection during the dry season, despite the presence of high levels of chloride (45mg/l-56mg/l) and nitrate (23mg/l – 30mg/l NO3-N), indicating sewage impacts. A programme of column and batch testing of laterite underlying the area provided a means of investigating the soil’s attenuation capacity under more controlled conditions.
X-ray diffraction analyses revealed the laterite to be dominated by quartz and kaolinite with minor (<5% by volume) quantities of haematite. Batch studies revealed that over 99% of bacteriophage adsorbed to haematite in less than 5 minutes. By contrast batch tests on haematite-free soil samples from the Blue Hills in Australia showed that although they had comparable dominant mineralogy and iron coverage on their surfaces (determined from Energy dispersive X-ray fluorescence) they had negligible ability to adsorb H40/1.
Based on the results of the batch studies using natural soils, a programme of batch studies, undertaken using pure haematite showed the mineral to have an extremely high capacity to adsorb bacteriophage, and suggested that it was responsible for the levels of attenuation observed.
The results of column studies were in keeping with the findings of batch experiments. Injection of 20 pore volumes of 300 pfu/mL of the bacteriophage H40/1 into a 20mm diameter glass column packed with sand sized (Ø>500µm) laterite revealed that the column could irreversibly remove over 2.5 log10 bacteriophage over its 10cm length.
Importance:
Mineralogical and batch test data provide convincing evidence to show that laterite can potentially act as an inexpensive means of removing micro organisms from water. The material, particularly in nodular form, displays considerable potential to act as an alternative filter material to conventional quartz filter sands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific 14 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 x 10(6) PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 x 10(3) PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 x 10(3) PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes further validation of a previously described Peptide-mediated magnetic separation (PMS)-Phage assay, and its application to test raw cows’ milk for presence of viable Mycobacterium avium subsp. paratuberculosis (MAP). The inclusivity and exclusivity of the PMS-phage assay were initially assessed, before the 50% limit of detection (LOD50) was determined and compared with those of PMS-qPCR (targeting both IS900 and f57) and PMS-culture. These methods were then applied in parallel to test 146 individual milk samples and 22 bulk tank milk samples from Johne’s affected herds. Viable MAP were detected by the PMS-phage assay in 31 (21.2%) of 146 individual milk samples (mean plaque count of 228.1 PFU/50 ml, range 6-948 PFU/50 ml), and 13 (59.1%) of 22 bulk tank milks (mean plaque count of 136.83 PFU/50 ml, range 18-695 PFU/50 ml). In contrast, only 7 (9.1%) of 77 individual milks and 10 (45.4%) of 22 bulk tank milks tested PMS-qPCR positive, and 17 (11.6%) of 146 individual milks and 11 (50%) of 22 bulk tank milks tested PMS-culture positive. The mean 50% limits of detection (LOD50) of the PMS-phage, PMS-IS900 qPCR and PMS-f57 qPCR assays, determined by testing MAP-spiked milk, were 0.93, 135.63 and 297.35 MAP CFU/50 ml milk, respectively. Collectively, these results demonstrate that, in our laboratory, the PMS-phage assay is a sensitive and specific method to quickly detect the presence of viable MAP cells in milk. However, due to its complicated, multi-step nature, the method would not be a suitable MAP screening method for the dairy industry.