11 resultados para Oxidoreductases, N-Demethylating

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association between poor metabolic control and the microvascular complications of diabetes is now well established, but the relationship between long-term metabolic control and the accelerated atherosclerosis of diabetes is as yet poorly defined. Hyperglycemia is the standard benchmark by which metabolic control is assessed. One mechanism by which elevated glucose levels may mediate vascular injury is through early and advanced glycation reactions affecting a wide variety of target molecules. The "glycation hypothesis'' has developed over the past 30 years, evolving gradually into a "carbonyl stress hypothesis'' and taking into account not only the modification of proteins by glucose, but also the roles of oxidative stress, a wide range of reactive carbonyl-containing intermediates (derived not only from glucose but also from lipids), and a variety of extra- and intracellular target molecules. The final products of these reactions may now be termed "Either Advanced Glycation or Lipoxidation End-Products'' or "EAGLEs.'' The ubiquity of carbonyl stress within the body, the complexity of the reactions involved, the variety of potential carbonyl intermediates and target molecules and their differing half-lives, and the slow development of the complications of diabetes all pose major challenges in dissecting the significance of these processes. The extent of the reactions tends to correlate with overall metabolic control, creating pitfalls in the interpretation of associative data. Many animal and cell culture studies, while supporting the hypothesis, must be viewed with caution in terms of relevance to human diabetes. In this article, the development of the carbonyl stress hypothesis is reviewed, and implications for present and future treatments to prevent complications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Our previous laboratory and clinical data suggested that one mechanism underlying the development of platinum resistance in ovarian cancer is the acquisition of DNA methylation. We therefore tested the hypothesis that the DNA hypomethylating agent 5-aza-2'-deoxycytodine (decitabine) can reverse resistance to carboplatin in women with relapsed ovarian cancer.

Methods: Patients progressing 6-12 months after previous platinum therapy were randomised to decitabine on day 1 and carboplatin (AUC 6) on day 8, every 28 days or carboplatin alone. The primary objective was response rate in patients with methylated hMLH1 tumour DNA in plasma.

Results: After a pre-defined interim analysis, the study closed due to lack of efficacy and poor treatment deliverability in 15 patients treated with the combination. Responses by GCIG criteria were 9 out of 14 vs 3 out of 15 and by RECIST were 6 out of 13 vs 1 out of 12 for carboplatin and carboplatin/decitabine, respectively. Grade 3/4 neutropenia was more common with the combination (60% vs 15.4%) as was G2/3 carboplatin hypersensitivity (47% vs 21%).

Conclusions: With this schedule, the addition of decitabine appears to reduce rather than increase the efficacy of carboplatin in partially platinum-sensitive ovarian cancer and is difficult to deliver. Patient-selection strategies, different schedules and other demethylating agents should be considered in future combination studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.

OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.

DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.

MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.

RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.

CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The genetic variation which underlies the thermolability and low enzyme activity of 5,10-methylenetetrahydrofolate reductase (MTHFR; C677T) has been extensively studied in many populations, including the Irish population.

AIM: To describe the examination of the C677T substitution in two new control samples drawn from the Irish population.

METHODS: A collection of 487 serum samples was obtained through the blood transfusion services of both the Republic of Ireland and Northern Ireland and a further 115 samples from volunteers.

RESULTS: In both samples, the frequency of the thermolabile/low enzyme activity allele (T) was higher than that previously reported for the Irish population.

CONCLUSION: This finding thus supports the need for a greater use of internal control/family-based association studies, as opposed to the classic case control study design, when assessing the contribution of the MTHFR T allele to disease processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF) is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA) expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu). As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression.

METHODS: CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR) was used to examine the methylation status of the Thy-1 promoter.

RESULTS: Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2'-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2.

CONCLUSION: These data suggest that global and gene-specific changes in DNA methylation may play an important role in fibroblast function in hypoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed fluorescent in situ hybridization (FISH) for 16q23 abnormalities in 861 patients with newly diagnosed multiple myeloma and identified deletion of 16q [del(16q)] in 19.5%. In 467 cases in which demographic and survival data were available, del(16q) was associated with a worse overall survival (OS). It was an independent prognostic marker and conferred additional adverse survival impact in cases with the known poor-risk cytogenetic factors t(4;14) and del(17p). Gene expression profiling and gene mapping using 500K single-nucleotide polymorphism (SNP) mapping arrays revealed loss of heterozygosity (LOH) involving 3 regions: the whole of 16q, a region centered on 16q12 (the location of CYLD), and a region centered on 16q23 (the location of the WW domain-containing oxidoreductase gene WWOX). CYLD is a negative regulator of the NF-kappaB pathway, and cases with low expression of CYLD were used to define a "low-CYLD signature." Cases with 16q LOH or t(14;16) had significantly reduced WWOX expression. WWOX, the site of the translocation breakpoint in t(14;16) cases, is a known tumor suppressor gene involved in apoptosis, and we were able to generate a "low-WWOX signature" defined by WWOX expression. These 2 genes and their corresponding pathways provide an important insight into the potential mechanisms by which 16q LOH confers poor prognosis.