14 resultados para Orthogonal Activation Functions

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferons (IFNs) are essential for host defense. Although the antiviral effects of the type 1 IFNs IFN- and IFN- (IFN-/) have been established, their immunoregulatory functions, especially their ability to regulate IFN- production, are poorly understood. Here we show that IFN-/ activate STAT4 directly (STAT, signal transducers and activators of transcription) and that this is required for IFN- production during viral infections of mice, in concert with T cell receptor-derived signals. In contrast, STAT1 appears to negatively regulate IFN-/ induction of IFN-. Thus, type 1 IFNs, in addition to interleukin-12, provide pathways for innate regulation of adaptive immunity, and their immunoregulatory functions are controlled by modulating the activity of individual STATs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta1,4-galactosyltransferase V (GalT V; EC 2.4.1.38) can effectively galactosylate the GlcNAcbeta1-->6Man arm of the highly branched N-glycans that are characteristic of glioma. Previously, we have reported that the expression of GalT V is increased in the process of glioma. However, currently little is known about the role of GalT V in this process. In this study, the ectopic expression of GalT V could promote the invasion and survival of glioma cells and transformed astrocytes. Furthermore, decreasing the expression of GalT V in glioma cells promoted apoptosis, inhibited the invasion and migration and the ability of tumor formation in vivo, and reduced the activation of AKT. In addition, the activity of GalT V promoter could be induced by epidermal growth factor, dominant active Ras, ERK1, JNK1, and constitutively active AKT. Taken together, our results suggest that GalT V functioned as a novel glioma growth activator and might represent a novel target in glioma therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raf-mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase (PI3K)-AKT pathways are two downstream effectors of the small GTPase Ras. Although both pathways are positively regulated by Ras, the Raf-MAPK and PI3K-AKT pathways have been shown to control opposing functions within the cell, suggesting a need for cross-talk regulation. The PI3K -AKT pathway can inhibit the Raf-MAPK pathway directly during processes such as muscle differentiation. Here we describe the ability of the Raf-MAPK pathway to negatively regulate the PI3K-AKT pathway during cellular arrest. Constitutive activation of Raf or methyl ethyl ketone 1 (MEK1) leads to inhibition of AKT and cellular arrest. Furthermore, we show that activation of Raf-MEK1 signaling causes negative feedback inhibition of Ras through the ephrin receptor EphA(2). EphA(2)-mediated negative feedback inhibition is required for Raf-induced AKT inhibition and cell cycle arrest, therefore establishing the inhibition of the Ras-PI3K-AKT pathway as a necessary event for the Raf-MEK1-regulated cellular arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epac1 and Epac2 bind cAMP and mediate cAMP-dependent activation of Rap1. cAMP is produced in neutrophils in response to many chemoattractants. This second messenger plays a key role in the regulation of the functions of neutrophils. However, it is still not known whether Epacs are expressed in human neutrophils. We found that stimulation of PLB-985 cells differentiated into neutrophil-like cells, human neutrophils with 8CPT-2Me-cAMP (a selective activator of Epacs), or FK (a diterpene that augments the intracellular level of cAMP) led to GTP-loading of Rap1. Epac1 mRNA was expressed in UND and DF PLB-985 cells, but Epac1 protein was only detected in DF PLB-985 cells. In human neutrophils, the Epac1 transcript was present, and Epac1 protein could be detected by Western blot analysis if the cells had been treated with the serine protease inhibitor PMSF. FK induced adhesion of PLB-985 cells and human neutrophils on fibrinogen, a ligand for beta 2 integrins. Interestingly, in DF PLB-985 cells, but not in human neutrophils, 8CPT-2Me-cAMP induced beta 2 integrin-dependent adhesion. The failure of 8CPT-2Me-cAMP to induce beta 2 integrin-dependent human neutrophil adhesion could be explained by the fact that this compound did not induce a switch of the beta 2 integrins from a low-affinity to a high-affinity ligand-binding conformation. We concluded that Epac1 is expressed in human neutrophils and is involved in cAMP-dependent regulation of Rap1. However, the loading of GTP on Rap1 per se is not sufficient to promote activation of beta 2 integrins. J. Leukoc. Biol. 90: 741-749; 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation in the activation energy for the initial stage of photomineralization of 4-chlorophenol (4-CP), sensitized by Degussa P25 TiO2 was investigated as a function of P-O2 and [4-CP]. A model was developed based on the incorporation of Arrhenius-type functions in a general rate equation for the initial stage of photomineralization. Values of the essential constants in the model were derived from a few simple experiments. Positive, negative and zero apparent activation energies were predicted using the model, and verified experimentally, under moderate reaction conditions. The general applicability of the model is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a data driven orthogonal basis function approach is proposed for non-parametric FIR nonlinear system identification. The basis functions are not fixed a priori and match the structure of the unknown system automatically. This eliminates the problem of blindly choosing the basis functions without a priori structural information. Further, based on the proposed basis functions, approaches are proposed for model order determination and regressor selection along with their theoretical justifications. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIa is a component of the initiation-competent RNA polymerase Iß complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIa functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular signal transduction in response to environmental signals involves a relay of precisely regulated signal amplifying and damping events. A prototypical signaling relay involves ligands binding to cell surface receptors and triggering the activation of downstream enzymes to ultimately affect the subcellular distribution and activity of DNA-binding proteins that regulate gene expression. These so-called signal transduction cascades have dominated our view of signaling for decades. More recently evidence has accumulated that components of these cascades can be multifunctional, in effect playing a conventional role for example as a cell surface receptor for a ligand whilst also having alternative functions for example as transcriptional regulators in the nucleus. This raises new challenges for researchers. What are the cues/triggers that determine which role such proteins play? What are the trafficking pathways which regulate the spatial distribution of such proteins so that they can perform nuclear functions and under what circumstances are these alternative functions most relevant?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.