17 resultados para Optimal linear control

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE
To assess the relationship between glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes.

RESEARCH DESIGN AND METHODS
Pregnancy outcome (pre-eclampsia or gestational hypertension) was assessed prospectively in 749 women from the randomized controlled Diabetes and Pre-eclampsia Intervention Trial (DAPIT). HbA1c (A1C) values were available up to 6 months before pregnancy (n = 542), at the first antenatal visit (median 9 weeks) (n = 721), at 26 weeks’ gestation (n = 592), and at 34 weeks’ gestation (n = 519) and were categorized as optimal (<6.1%: referent), good (6.1–6.9%), moderate (7.0–7.9%), and poor (=8.0%) glycemic control, respectively.

RESULTS
Pre-eclampsia and gestational hypertension developed in 17 and 11% of pregnancies, respectively. Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy compared with women who did not develop pre-eclampsia (P < 0.05, respectively). In early pregnancy, A1C =8.0% was associated with a significantly increased risk of pre-eclampsia (odds ratio 3.68 [95% CI 1.17–11.6]) compared with optimal control. At 26 weeks’ gestation, A1C values =6.1% (good: 2.09 [1.03–4.21]; moderate: 3.20 [1.47–7.00]; and poor: 3.81 [1.30–11.1]) and at 34 weeks’ gestation A1C values =7.0% (moderate: 3.27 [1.31–8.20] and poor: 8.01 [2.04–31.5]) significantly increased the risk of pre-eclampsia compared with optimal control. The adjusted odds ratios for pre-eclampsia for each 1% decrement in A1C before pregnancy, at the first antenatal visit, at 26 weeks’ gestation, and at 34 weeks’ gestation were 0.88 (0.75–1.03), 0.75 (0.64–0.88), 0.57 (0.42–0.78), and 0.47 (0.31–0.70), respectively. Glycemic control was not significantly associated with gestational hypertension.

CONCLUSIONS
Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy. These data suggest that optimal glycemic control both early and throughout pregnancy may reduce the risk of pre-eclampsia in women with type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of a linearly-polarised agile antenna is presented. The antenna is fed by a quasi-lumped coupler which has the ability to tune the magnitude ratio between its two outputs from -30 dB to 15 dB by modifying the bias of two varactor diodes. In this way the relative power fed to each orthogonal port of a patch antenna can be varied. Consequently, tilt control of the radiated linearly-polarised waves is achieved over a range of 90 degrees.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.

Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.

Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.

Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.