43 resultados para One-carbon metabolism

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.

Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.

Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.

Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.

Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown.

Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses.

Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1).

Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The speeds of sound in dibromomethane, bromochloromethane, and dichloromethane have been measured in the temperature range from 293.15 to 313.15 K and at pressures up to 100 MPa. Densities and isobaric heat capacities at atmospheric pressure have been also determined. Experimental results were used to calculate the densities and isobaric heat capacities as the function of temperature and pressure by means of a numerical integration technique. Moreover, experimental data at atmospheric pressure were then used to determine the SAFT-VR Mie molecular parameters for these liquids. The accuracy of the model has been then evaluated using a comparison of derived experimental high-pressure data with those predicted using SAFT. It was found that the model provide the possibility to predict also the isobaric heat capacity of all selected haloalkanes within an error up to 6%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use potential as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids.Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as 70) shifts in 13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of tube-tube interactions in ropes of (10,10) carbon nanotubes, and find that these effects induce a pseudogap in the density of state (DOS) of the rope of width 0.1 eV at the Fermi level. In an isolated (n,n) carbon nanotube there are two bands that cross in a linear fashion at the Fermi level, making the nanotube metallic with a DOS that is constant in a 1.5 eV wide window around the Fermi energy. The presence of the neighbouring tubes causes these two bands to repel, opening up a band gap that can be as large as 0.3 eV. The small dispersion in the plane perpendicular to the rope smears out this gap for a rope with a large cross-sectional area, and we see a pseudogap at the Fermi energy in the DOS where the DOS falls to one third of its value for the isolated tube. This phenomenon should affect many properties of the behavior of ropes of (n,n) nanotubes, which should display a more semimetallic character than expected in transport and doping experiments, with the existence of both hole and electron carriers leading to qualitatively different thermopower and Hall-effect behaviors from those expected for a normal metal. Band repulsion like this can be expected to occur for any tube perturbed by a sufficiently strong interaction, for example, from contact with a surface or with other tubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report calculations of the transport properties of multiwalled carbon nanotubes based on a scattering-theoretic approach that takes into account scattering within each tube, between tubes, and at the metal contacts. We find that only the outer tube contributes to the conductance, as has been implied by experiments. Referring to experiments performed with liquid-metal contacts, we also explain why the measured conductance is close to an integer number of conductance quanta, when the tubes are immersed in the liquid metal for several hundreds of nanometers and is not an integer when they are immersed for only a few nanometers. Finally, we propose that the observed conductance of only one quantum

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a stylized theoretical model, we argue that current economic analyses of climate policy tend to over-estimate the degree of carbon leakage, as they abstract from the effects of induced technological change. We analyse carbon leakage in a two-country model with directed technical change, where only one of the countries enforces an exogenous cap on emissions. Climate policy induces changes in relative prices, that cause carbon leakage through a terms-of-trade effect. However, these changes in relative prices also affect the incentives to innovate in different sectors. This leads to a counterbalancing induced-technology effect, which always reduces carbon leakage. We therefore conclude that the leakage rates reported in the literature may be too high, as these estimates neglect the effect of price changes on the incentives to innovate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.