6 resultados para Odontoblast

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Odontoblasts form the outermost cellular layer of the dental pulp where they have been proposed to act as sensory receptor cells. Despite this suggestion, evidence supporting their direct role in mediating thermo-sensation and nociception is lacking. Transient receptor potential (TRP) ion channels directly mediate nociceptive functions, but their functional expression in human odontoblasts has yet to be elucidated. In the present study, we have examined the molecular and functional expression of thermo-sensitive TRP channels in cultured odontoblast-like cells and in native human odontoblasts obtained from healthy wisdom teeth. PCR and western blotting confirmed gene and protein expression of TRPV1, TRPA1 and TRPM8 channels. Immunohistochemistry revealed that these channels were localised to odontoblast-like cells as determined by double staining with dentin sialoprotein (DSP) antibody. In functional assays, agonists of TRPV1, TRPA1 and TRPM8 channels elicited [Ca2+]i transients that could be blocked by relevant antagonists. Application of hot and cold stimuli to the cells also evoked rises in [Ca2+]i which could be blocked by TRP-channel antagonists. Using a gene silencing approached we further confirmed a role for TRPA1 in mediating noxious cold responses in odontoblasts. We conclude that human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth. Cultured and native human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mechanotransduction in the dental pulp is mediated by mechano-sensitive trigeminal afferents but accumulating evidence suggests odontoblasts also contribute to mechano-sensory functions of the pulp as evidenced by expression of TRP channels, calcium-activated potassium channels and TREK-1 potassium channels. Activation of these mechano-sensitive channels is considered critical for the mechanotransduction of fluid movement within dentinal tubules into electrical signals transmitted by the pulpal afferents to elicit tooth sensitivity and pain. Since tooth pain and sensitivity are potentiated by inflammation we hypothesise that the inflammatory cytokine TNF-α sensitizes odontoblast responses to mechanical stimuli. Objective: To investigate the effect of TNF-α on the response of odontblast-like cells to mechanical stimuli. Method: Odontoblast-like cells were derived from dental pulp cells of immature third molars as previously described (El-karim et al 20112011 Pain, 152, 2211-2223). Odontoblast response to mechanical stimuli (application of hypotonic solution) was determined using ratiometric calcium imaging. Cells were treated with TNF-α for either 24hrs or short application for 10 mins prior to calcium imaging. Result: Odontoblast-like cells responded to hypotonic solution (230 mOSM) by increase in cytoplasmic Ca2+ concentration [Ca+2]i that was reduced to near base line in the presence of the TRPV4 antagonist RN-1734. Incubation of odontoblast -like cells with TNFα for 24 hrs resulted in a significant increase in cytoplasmic Ca2+ concentration in response to hypotonic stimuli compared to untreated cells. Similar results were obtained when cells were treated with TNF-α for 10 mins prior to imaging. Conclusion: Both short and long term treatment of odontoblasts-like cells with TNF-α resulted in enhanced responses to mechanical stimuli mediated via TRPV4 channel suggesting a role for this channel in inflammatory dental pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Thermal changes in the oral cavity are a common trigger of dental pain. Several members of the transient receptor potential (TRP) super family of ion channels are believed to play a critical role in sensory physiology, where they act as transducers for thermal, mechanical and chemical stimuli. Objectives: The present study was designed to determine the expression and functionality of the TRPV1 channel in human odontoblasts. Methods: Cultured human odontoblasts were derived from dental pulp cells induced with 2 mM beta-glycerophosphate. Molecular and protein expression of TRPV1 was confirmed by PCR, western blotting and immunohistochemistry. Functional expression of the ‘heat-sensing' TRPV1 channel was investigated using a Ca2+ microfluorimetry assay in the presence of agonists/antagonists or with appropriate adjustment of the recording chamber temperature. Results: The odontoblastic phenotype of the cells was confirmed by the expression of the odontoblast markers dentin sialophosphoprotein (DSPP) and nestin. Expression of TRPV1 in human odontoblastic cells was confirmed by PCR, western blotting and immunohistochemistry. Odontoblasts were shown to respond to pharmacological agonists and to increasing temperature by an increase in intracellular Ca2+. Both the pharmacological and temperature responses could be blocked by specific antagonists. These results indicate that odontoblasts may sense heat via TRPV1. Conclusion: This study reports that TRPV1 is expressed by human odontoblasts and is activated by specific pharmacological agonists and by heat.
This work was supported by Research Grants from the Royal College of Surgeons of Edinburgh and the British Endodontic Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The transient receptor potential (TRP) ion channels play a critical role in sensory physiology, where they act as transducers of thermal, mechanical and chemical stimuli. We have previously shown the functional expression of several TRP channels by human odontoblast-like cells and proposed their significance in odontoblast sensory perception. Functional expression of the mechano-sensitiveTRPV2 channel by human odontoblasts would further support a role for TRP channels in odontoblast physiology. Objective: The objective of the current study was to determine the functional expression of TRPV2 by human odontoblasts. Methods: Human dental pulp cells were cultured in the presence of 2 mM β-glycerophoshate to induce an odontoblast phenotype. TRPV2 gene expression was determined by qPCR employing custom designed FAM TRPV2 specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). TRPV2 protein expression was determined following SDS-PAGE and Western blotting of cell lysate preparations. Functional expression of TRPV2 was investigated by Ca2+ microfluorimetry. Results: qPCR data indicated robust expression of TRPV2 in odontoblast-like cells. Western blotting revealed a discrete immunoreactive protein band indicating expression of TRPV2 in cell lysates. In functional assays, the chemical agonist of TRPV2, cannabidiol, was shown to elicit [Ca2+]i transients, that were reduced to baseline in the presence of the TRPV2 antagonist Tranilast, suggesting channel functionality in odontoblast-like cells. Conclusion: These results provide the first evidence for the functional expression of TRPV2 in human odontoblast-like cells, providing further support for the role of TRP channels in odontoblast physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression.

METHODS: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies.

RESULTS: Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment.

CONCLUSIONS: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses.