255 resultados para Oceania -- Colonization -- History

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus) that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population) and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation.
Results: Gene coalescence analyses [11 microsatellite loci and mitochondrial DNA (mtDNA) sequences] suggest that crater lake Apoyeque was colonized in a single event from the large neighbouring great lake Managua only about 100 years ago. This founding in historic times is also reflected in the extremely low nuclear and mitochondrial genetic diversity in Apoyeque. We found that sympatric adult thin- and thick-lipped fishes occupy distinct ecological trophic niches. Diet, body shape, head width, pharyngeal jaw size and shape and stable isotope values all differ significantly between the two lip-morphs. The eco-morphological features pharyngeal jaw shape, body shape, stomach contents and stable isotopes (d15N) all show a bimodal distribution of traits, which is compatible with the expectations of an initial stage of ecological speciation under disruptive selection. Genetic differentiation between the thin- and thick-lipped population is weak at mtDNA sequence (FST = 0.018) and absent at nuclear microsatellite loci (FST < 0.001).
Conclusions: This study provides empirical evidence of eco-morphological differentiation occurring very quickly after the colonization of a new and vacant habitat. Exceptionally low levels of neutral genetic diversity and inference from coalescence indicates that the Midas cichlid population in Apoyeque is much younger (ca. 100 years or generations old) than the crater itself (ca. 1 800 years old). This suggests either that the crater remained empty for many hundreds of years after its formation or that remnant volcanic activity prevented the establishment of a stable fish population during the early life of the crater lake. Based on our findings of eco-morphological variation in the Apoyeque Midas cichlids, and known patterns of adaptation in Midas cichlids in general, we suggest that this population may be in a very early stage of speciation (incipient species), promoted by disruptive selection and ecological diversification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa. Heredity (2010) 104, 148-154; doi:10.1038/hdy.2009.84; published online 29 July 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human settlement of Oceania marked the culmination of a global colonization process that began when humans first left Africa at least 90,000 years ago. The precise origins and dispersal routes of the Austronesian peoples and the associated Lapita culture remain contentious, and numerous disparate models of dispersal (based primarily on linguistic, genetic, and archeological data) have been proposed. Here, through the use of mtDNA from 781 modern and ancient Sus specimens, we provide evidence for an early human-mediated translocation of the Sulawesi warty pig (Sus celebensis) to Flores and Timor and two later separate human-mediated dispersals of domestic pig (Sus scrofa) through Island Southeast Asia into Oceania. Of the later dispersal routes, one is unequivocally associated with the Neolithic (Lapita) and later Polynesian migrations and links modern and archeological Javan, Sumatran, Wallacean, and Oceanic pigs with mainland Southeast Asian S. scrofa. Archeological and genetic evidence shows these pigs were certainly introduced to islands east of the Wallace Line, including New Guinea, and that so-called "wild" pigs within this region are most likely feral descendants of domestic pigs introduced by early agriculturalists. The other later pig dispersal links mainland East Asian pigs to western Micronesia, Taiwan, and the Philippines. These results provide important data with which to test current models for human dispersal in the region. © 2007 by The National Academy of Sciences of the USA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.

Relevância:

20.00% 20.00%

Publicador: