2 resultados para OMNIVORY

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding in Dikerogammarus villosus (Sowinsky, 1894) males was observed in the field and recorded on video in the laboratory. The following feeding modes were recognized: detritus feeding, grazing, particle feeding, coprophagy, predation on benthic and free swimming invertebrates, predation on fish eggs and larvae, as well as feeding on byssus threads of the zebra mussel, Dreissena polymorpha (Pallas, 1771). The feeding methods are described and illustrated with screenshots of video recordings. The very flexible feeding modes of D. villosus, which make diet switches possible, form a trait that must be an important factor in the invasion success of this Ponto-Caspian gammaridean species, and may thus explain for a great deal its high ecosystem impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.