5 resultados para Numerical Approximation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-linear lumped model of the reed-mouthpiece-lip system of a clarinet is formulated, in which the lumped parameters are derived from numerical experiments with a finite-difference simulation based on a distributed reed model. The effective stiffness per unit area is formulated as a function of the pressure signal driving the reed, in order to simulate the effects of the reed bending against the lay, and mass and damping terms are added as a first approximation to the dynamic behaviour of the reed. A discrete-time formulation is presented, and its response is compared to that of the distributed model. In addition, the lumped model is applied in the simulation of clarinet tones, enabling the analysis of the effects of using a pressure-dependent stiffness per unit area on sustained oscillations. The analysed effects and features are in qualitative agreement with players' experiences and experimental results obtained in prior studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.