99 resultados para Notch signaling

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NOTCH pathway is an evolutionarily conserved signalling network, which is fundamental in regulating developmental processes in invertebrates and vertebrates (Gazave et al. in BMC Evol Biol 9:249, 2009). It regulates self-renewal (Butler et al. in Cell Stem Cell 6:251–264, 2010), differentiation (Auderset et al. in Curr Top Microbiol Immunol 360:115–134, 2012), proliferation (VanDussen et al. in Development 139:488–497, 2012) and apoptosis (Cao et al. in APMIS 120:441–450, 2012) of diverse cell types at various stages of their development. NOTCH signalling governs cell-cell interactions and the outcome of such responses is highly context specific. This makes it impossible to generalize about NOTCH functions as it stimulates survival and differentiation of certain cell types, whereas inhibiting these processes in others (Meier-Stiegen et al. in PLoS One 5:e11481, 2010). NOTCH was first identified in 1914 in Drosophila and was named after the indentations (notches) present in the wings of the mutant flies (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010). Homologs of NOTCH in vertebrates were initially identified in Xenopus (Coffman et al. in Science 249:1438–1441, 1990) and in humans NOTCH was first identified in T-Acute Lymphoblastic Leukaemia (T-ALL) (Ellisen et al. in Cell 66:649–61, 1991). NOTCH signalling is integral in neurogenesis (Mead and Yutzey in Dev Dyn 241:376–389, 2012), myogenesis (Schuster-Gossler et al. in Proc Natl Acad Sci U S A 104:537–542, 2007), haematopoiesis (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010), oogenesis (Xu and Gridley in Genet Res Int 2012:648207, 2012), differentiation of intestinal cells (Okamoto et al. in Am J Physiol Gastrointest Liver Physiol 296:G23–35, 2009) and pancreatic cells (Apelqvist et al. in Nature 400:877–881, 1999). The current review will focus on NOTCH signalling in normal and malignant blood cell production or haematopoiesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling. Inhibition of this pathway in uninjured animals allowed ependymal cells to enter the cell cycle and produce olfactory bulb neurons, whereas forced Notch signaling was sufficient to block the ependymal cell response to stroke. Ependymal cells were depleted by stroke and failed to self-renew sufficiently to maintain their own population. Thus, although ependymal cells act as primary cells in the neural lineage to produce neurons and glial cells after stroke, they do not fulfill defining criteria for stem cells under these conditions and instead serve as a reservoir that is recruited by injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A better understanding of events triggering chronic myeloid leukemia progression are critical to optimised clinical management of chronic myeloid leukemia (CML). We sought to validate that increased Musashi 2 (MSI2), a post transcription regulator, expression is associated with progression and prognosis. Screening of 152 CML patients showed MSI2 was significantly decreased among CML patients in CP at diagnosis (p<0.0001), but found no significant difference between the normal control group and treated CML patients in CP. Moreover it was significantly increased (p<0.0001) in advance disease (AD) CML patients. Furthermore, our human hematopoietic cell line data imply MSI2 and BCR-ABL1 mRNA expression correlate. However, these data cast a doubt on earlier reports that MSI2 effects HES1 expression via NUMB-NOTCH signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.

Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.

Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-gamma, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-gamma. We also show that the induction of IRF-7 by BRCA1 and IFN-gamma is dependent on the type I IFNs, IFN-alpha and IFN-beta. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-gamma. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-alpha and IFN-beta in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-gamma regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local control of blood flow to the photoreceptors and associated neurons in the retina is largely achieved through changes in tone within the choroidal and retinal arterioles. This is primarily achieved through changes in [Ca2+] within the smooth muscle of these vessels, which regulates cell contraction and vascular constriction. Here we review some aspects of the cell physiology involved in these Ca2+-signaling processes, with particular emphasis on the molecular mechanisms involved. Ca2+-influx across the plasma membrane can occur via a variety of Ca2+-channels, including voltage-operated, store-operated, and receptor-operated channels. Ca2+ may also be released from intracellular stores via RyR-, or IP3R-gated channels in the SR membrane. Using high-speed confocal Ca2+-imaging, we have also demonstrated that the resulting signals are far from homogeneous, with spontaneous activity in retinal arterioles being characterized by both localized Ca2+-sparks and more global Ca2+-waves and oscillations. These signals may be specifically and differentially targeted, for example, to Ca2+-sensitive ion channels (stimulus-excitation coupling), or pathways regulating contraction (stimulus-contraction coupling). Exploring the role of changes in such targeting in disease states will provide exciting opportunities for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. In this study, human glioblastoma T98G cell nuclei were individually irradiated with an exact number of helium ions using a single-cell microbeam. It was found that when only 1 cell in a population of approximately 1200 cells was targeted, with one or five ions, cellular damage measured as induced micronuclei was increased by 20%. When a fraction from 1% to 20% of cells were individually targeted, the micronuclei yield in the population greatly exceeded that predicted on the basis of the micronuclei yield when all of the cells were targeted assuming no bystander effect was occurring. However when 2-(4-carboxyphenyl)-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a nitric oxide (NO)-specific scavenger was present in the culture medium, the micronuclei yields reduced to the predicted values, which indicates that NO contributes to the bystander effect. By using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), NO was detected in situ, and it was found that NO-induced fluorescence intensity in the irradiated population where 1% of cell nuclei were individually targeted with a single helium ion was increased by 1.13 +/- 0.02-fold (P <0.005) relative to control with approximately 40% of the cells showing increased NO levels. Moreover, the medium harvested from helium ion-targeted cells showed a cytotoxic effect by inducing micronuclei in unirradiated T98G cells, and this bystander response was also inhibited by c-PTIO treatment. The induction of micronuclei in the population could also be decreased by c-PTIO treatment when 100% of cells were individually targeted by one or two helium ions, indicating a complex interaction of direct irradiation and bystander signals.