5 resultados para Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve (Hawaii)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary studies of sea turtle diving behaviour are generally based upon sophisticated techniques such as the attachment of time depth recorders. However, if the risks of misinterpretation are to be minimized, it is essential that electronic data are analysed in the light of first-hand observations. To this aim, we set out to make observations of juvenile hawksbill turtles (Eretmochelys imbricata , Linnaeus, 1766) foraging and resting in a shallow water coral reef habitat around the granitic Seychelles (4degrees'S, 55degrees'E). Data were collected from six study sites characterized by a shallow reef plateau (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relative sea-level rise has been a major factor driving the evolution of reef systems during the Holocene. Most models of reef evolution suggest that reefs preferentially grow vertically during rising sea level then laterally from windward to leeward, once the reef flat reaches sea level. Continuous lagoonal sedimentation ("bucket fill") and sand apron progradation eventually lead to reef systems with totally filled lagoons. Lagoonal infilling of One Tree Reef (southern Great Barrier Reef) through sand apron accretion was examined in the context of late Holocene relative sea-level change. This analysis was conducted using sedimentological and digital terrain data supported by 50 radiocarbon ages from fossil microatolls, buried patch reefs, foraminifera and shells in sediment cores, and recalibrated previously published radiocarbon ages. This data set challenges the conceptual model of geologically continuous sediment infill during the Holocene through sand apron accretion. Rapid sand apron accretion occurred between 6000 and 3000 calibrated yr before present B.P. (cal. yr B.P.); followed by only small amounts of sedimentation between 3000 cal. yr B.P. and present, with no significant sand apron accretion in the past 2 k.y. This hiatus in sediment infill coincides with a sea-level fall of similar to 1-1.3 m during the late Holocene (ca. 2000 cal. yr B.P.), which would have caused the turn-off of highly productive live coral growth on the reef flats currently dominated by less productive rubble and algal flats, resulting in a reduced sediment input to back-reef environments and the cessation in sand apron accretion. Given that relative sea-level variations of similar to 1 m were common throughout the Holocene, we suggest that this mode of sand apron development and carbonate production is applicable to most reef systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In small islands, a freshwater lens can develop due to the recharge induced by rain. Magnitude and spatial distribution of this recharge control the elevation of freshwater and the depth of its interface with salt water. Therefore, the study of lens morphology gives useful information on both the recharge and water uptake due to evapotranspiration by vegetation. Electrical resistivity tomography was applied on a small coral reef island, giving relevant information on the lens structure. Variable density groundwater flow models were then applied to simulate freshwater behavior. Cross validation of the geoelectrical model and the groundwater model showed that recharge exceeds water uptake in dunes with little vegetation, allowing the lens to develop. Conversely, in the low-lying and densely vegetated sectors, where water uptake exceeds recharge, the lens cannot develop and seawater intrusion occurs. This combined modeling method constitutes an original approach to evaluate effective groundwater recharge in such environments.
[Comte, J.-C., O. Banton, J.-L. Join, and G. Cabioch (2010), Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads, Water Resour. Res., 46, W06601, doi:10.1029/2009WR008058.]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef fish communities in the Seychelles are highly diverse and remain less affected by the direct impacts of human activities than those on many other coral reefs in the Indian Ocean. These factors make them highly suitable for a detailed survey of the impacts of the 1998 mass coral mortality, which devastated the coral faunas of the region. Using underwater visual census (UVC) techniques, fish communities were sampled in three localities in the southern Seychelles and one locality in the northern (granitic) Seychelles. Initial surveys were undertaken from the latter site in 1997. Surveys were undertaken at all sites during the coral bleaching episode in 1998 prior to any major changes in the reef fish communities. Repeat surveys were undertaken in 1999 one year after the coral mortality. Over 250 fish species were sampled from 35 families. Results suggest that changes in the overall fish community structures are not great, despite massive changes in the benthic cover. Significant changes have been observed in a number of individual species. These include those most heavily dependent on live coral cover for shelter or sustenance. Future potential changes are discussed, and potential management interventions are considered. (C) 2002 Elsevier Science Ltd. All rights reserved.