58 resultados para Nonlinear Schrödinger Equation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrodinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrodinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude
Resumo:
The nonlinear coupling between finite amplitude ion thermal waves (ITWs) and quasistationary density perturbations in a pair-ion plasma is considered. A generalized nonlinear Schrödinger equation is derived for the ITW electric field envelope, accounting for large amplitude quasistationary plasma slow motion describing the ITW ponderomotive force. The present theory accounts for the trapping of ITWs in a large amplitude ion density hole. The small amplitude limit is considered and exact analytical solutions are obtained. Finite amplitude solutions are obtained numerically and their characteristics are discussed.
Resumo:
A fluid model is used to describe the propagation of envelope structures in an ion plasma under the influence of the action of weakly relativistic electrons and positrons. A multiscale perturbative method is used to derive a nonlinear Schrödinger equation for the envelope amplitude. Criteria for modulational instability, which occurs for small values of the carrier wavenumber (long carrier wavelengths), are derived. The occurrence of rogue waves is briefly discussed. © Cambridge University Press 2013.
Resumo:
The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron-positron-ion plasma is investigated from first principles. Electrons and positrons follow a Fermi-Dirac distribution, while the ions are subject to a quantum (Fermi) pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the wave envelope is shown to be described by a nonlinear Schrödinger equation (NLSE). Criteria for modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather are proposed as candidate functions for rogue waves (freak waves) within the model. The characteristics of the latter and their dependence on relevant parameters (positron concentration and temperature) are investigated. © 2014 IOP Publishing Ltd.
Resumo:
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Resumo:
In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.
Resumo:
The nonlinear dynamics of modulated electrostatic wavepackets propagating in negativeion plasmas is investigated from first principles. A nonlinear Schrödinger equation is derived by adopting a multiscale technique. The stability of breather- like (bright envelope soliton) structures, considered as a precursor to freak wave (rogue wave) formation, is investigated and then tested via numerical simulations.
Resumo:
The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.
Resumo:
In this work we present the theoretical framework for the solution of the time-dependent Schrödinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron’s coordinates separated over two regions; that is, regions I and II. In region I the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wave function. In region II a grid representation of the wave function is considered and propagation in space and time is obtained through the finite-difference method. With this, a combination of basis set and grid methods is put forward for tackling multiregion time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multielectron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely, that beyond a certain distance (encompassing region I) a single ejected electron is distinguishable from the other electrons of the multielectron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.
Resumo:
The linear and nonlinear properties of the Rao-dust-magnetohydrodynamic (R-D-MHD) waves in a dusty magnetoplasma are studied. By employing the inertialess electron equation of motion, inertial ion equation of motion, Ampere's law, Faraday's law, and the continuity equation in a plasma with immobile charged dust grains, the linear and nonlinear propagation of two-dimensional R-D-MHD waves are investigated. In the linear regime, the existence of immobile dust grains produces the Rao cutoff frequency, which is proportional to the dust charge density and the ion gyrofrequency. On the other hand, the dynamics of amplitude modulated R-D-MHD waves is governed by the cubic nonlinear Schrodinger equation. The latter has been derived by using the reductive perturbation technique and the two-timescale analysis which accounts for the harmonic generation nonlinearity in plasmas. The stability of the modulated wave envelope against non-resonant perturbations is studied. Finally, the possibility of localized envelope excitations is discussed. (C) 2004 American Institute of Physics.
Resumo:
The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of ion-acoustic waves (IAWs) in a plasma consisting of warm ions, Maxwellian electrons, and a cold electron beam. Perturbations parallel to the carrier IAW propagation direction have been investigated. The existence of four distinct linear ion acoustic modes is shown, each of which possesses a different behavior from the modulational stability point of view. The stability analysis, based on a nonlinear Schrodinger equation (NLSE) reveals that the IAW may become unstable. The stability criteria depend on the IAW carrier wave number, and also on the ion temperature, the beam velocity and the beam electron density. Furthermore, the occurrence of localized envelope structures (solitons) is investigated, from first principles. The numerical analysis shows that the two first modes (essentially IAWs, modified due to the beam) present a complex behavior, essentially characterized by modulational stability for large wavelengths and instability for shorter ones. Dark-type envelope excitations (voids, holes) occur in the former case, while bright-type ones (pulses) appear in the latter. The latter two modes are characterized by an intrinsic instability, as the frequency develops a finite imaginary part for small ionic temperature values. At intermediate temperatures, both bright- and dark-type excitations may exist, although the numerical landscape is intertwined between stability and instability regions.(c) 2006 American Institute of Physics.
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency. © 2013 IOP Publishing Ltd.