27 resultados para Nonlinear Dynamic Responses
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One of the solutions is in a drive-by approach utilizing vehicle vibrations while the vehicle passes over the bridge. In this approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. This study aims to examine subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the drive-by method.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.
Resumo:
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.
Resumo:
A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.
Resumo:
The prediction and management of ecosystem responses to global environmental change would profit from a clearer understanding of the mechanisms determining the structure and dynamics of ecological communities. The analytic theory presented here develops a causally closed picture for the mechanisms controlling community and population size structure, in particular community size spectra, and their dynamic responses to perturbations, with emphasis on marine ecosystems. Important implications are summarised in non-technical form. These include the identification of three different responses of community size spectra to size-specific pressures (of which one is the classical trophic cascade), an explanation for the observed slow recovery of fish communities from exploitation, and clarification of the mechanism controlling predation mortality rates. The theory builds on a community model that describes trophic interactions among size-structured populations and explicitly represents the full life cycles of species. An approximate time-dependent analytic solution of the model is obtained by coarse graining over maturation body sizes to obtain a simple description of the model steady state, linearising near the steady state, and then eliminating intraspecific size structure by means of the quasi-neutral approximation. The result is a convolution equation for trophic interactions among species of different maturation body sizes, which is solved analytically using a novel technique based on a multiscale expansion.