72 resultados para Non-invasive temperature estimation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A real-time VHF swept frequency (20–300 MHz) reflectometry measurement for radio-frequency capacitive-coupled atmospheric pressure plasmas is described. The measurement is scalar, non-invasive and deployed on the main power line of the plasma chamber. The purpose of this VHF signal injection is to remotely interrogate in real-time the frequency reflection properties of plasma. The information obtained is used for remote monitoring of high-value atmospheric plasma processing. Measurements are performed under varying gas feed (helium mixed with 0–2% oxygen) and power conditions (0–40 W) on two contrasting reactors. The first is a classical parallel-plate chamber driven at 16 MHz with well-defined electrical grounding but limited optical access and the second is a cross-field plasma jet driven at 13.56 MHz with open optical access but with poor electrical shielding of the driven electrode. The electrical measurements are modelled using a lumped element electrical circuit to provide an estimate of power dissipated in the plasma as a function of gas and applied power. The performances of both reactors are evaluated against each other. The scalar measurements reveal that 0.1% oxygen admixture in helium plasma can be detected. The equivalent electrical model indicates that the current density between the parallel-plate reactor is of the order of 8–20 mA cm-2 . This value is in accord with 0.03 A cm-2 values reported by Park et al (2001 J. Appl. Phys. 89 20–8). The current density of the cross-field plasma jet electrodes is found to be 20 times higher. When the cross-field plasma jet unshielded electrode area is factored into the current density estimation, the resultant current density agrees with the parallel-plate reactor. This indicates that the unshielded reactor radiates electromagnetic energy into free space and so acts as a plasma antenna.
Resumo:
Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.
Resumo:
Evaluation of pain in neonates is difficult due to their limited means of communication. The aim was to determine whether behavioural reactions of cry and facial activity provoked by an invasive procedure could be discriminated from responses to non-invasive tactile events. Thirty-six healthy full-term infants (mean age 2.2 h) received 3 procedures in counterbalanced order: intramuscular injection, application of triple dye to the umbilical stub, and rubbing thigh with alcohol. Significant effects of procedure were found for total face activity and latency to face movement. A cluster of facial actions comprised of brow bulging, eyes squeezed shut, deepening of the naso-labial furrow and open mouth was associated most frequently with the invasive procedure. Comparisons between the 2 non-invasive procedures showed more facial activity to thigh swabbing and least to application of triple dye to the umbilical cord. Acoustic analysis of cry showed statistically significant differences across procedures only for latency to cry and cry duration for the group as a whole. However, babies who cried to two procedures showed higher pitch and greater intensity to the injection. There were no significant differences in melody, dysphonation, or jitter. Methodological difficulties for investigators in this area were examined, including criteria for the selection of cries for analysis, and the logical and statistical challenges of contrasting cries induced by different conditions when some babies do not always cry. It was concluded that facial expression, in combination with short latency to onset of cry and long duration of first cry cycle typifies reaction to acute invasive procedures.
Resumo:
Non-invasive population genetics has become a valuable tool in ecology and conservation biology, allowing genetic studies of wild populations without the need to catch, handle or even observe the study subjects directly. We address some of the concerns regarding the limitations of using non-invasive samples by comparing the quality of population genetic information gained through DNA extracted from faecal samples and biopsy samples of two elusive bat species, Myotis mystacinus and Myotis nattereri. We demonstrate that DNA extracted from faeces and tissue samples gives comparable results for frequency based population genetic analyses, despite the occurrence of genotyping errors when using faecal DNA. We conclude that non-invasive genetic sampling for population genetic analysis in bats is viable, and although more labour-intensive and expensive, it is an alternative to tissue sampling, which is particularly pertinent when specimens are rare, endangered or difficult to capture. © 2012 Museum and Institute of Zoology PAS.
Resumo:
Patients with intractably diminished bladder storage function are encountered frequently by neurourologists, occasionally requiring reconstructive surgery for appropriate resolution. Although sacral neuromodulation is a recognized effective therapeutic modality, present techniques are technically demanding, invasive, and expensive. This study investigated the effect of non-invasive third sacral nerve (S3) stimulation on bladder activity during filling cystometry. One hundred forty-six patients underwent standard urodynamic filling cystometry that was then immediately repeated. Patients in the study group (n = 74) received antidromic transcutaneous sacral neurostimulation during the second fill and the control group (n = 72) underwent a second fill without neurostimulation. A statistically significant increase in bladder storage capacity without a corresponding rise in detrusor pressure was observed in the neurostimulated patients. This improvement in functional capacity is an encouraging finding that further supports the use of this non-invasive treatment modality in clinical practice. Neurourol. Urodynam. 20:73-84. 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.