28 resultados para Noble-metal nanoparticles
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi
Resumo:
The SERS spectra of adenine recorded under a broad range of pH values and concentrations using both silver and gold colloids provided evidence for the existence of several distinct species. At high concentration (0.5-10 ppm), the spectra recorded between pH 1 and 11 showed only two distinct spectra, rather than the three forms that would be expected for a compound with two pK(a) values of 4.2 and 9.8. The spectra at neutral and alkaline pH were identical and assigned to the deprotonated form of adenine on the basis of DFT calculations, isotope shifts, and comparison with the normal Raman spectra of neutral and deprotonated adenine. The spectra at acidic pH were different, consistent with adenine protonation. Neutral adenine was not detected at any pH studied. At low adenine concentration (
Resumo:
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.
Prostate cancer (CaP) is the most commonly diagnosed cancer in males and is responsible for more than 10,000 deaths each year in the UK.1 Technical advances in radiotherapy delivery, including image-guided intensity-modulated radiotherapy (IG-IMRT), have enabled the delivery of higher radiation dose to the prostate, which has led to improved biochemical control. Further improvements in cancer imaging during radiotherapy are being developed with the advent of MRI simulators and MRI linear accelerators.2–4
Nanotechnology promises to deliver significant advancements across numerous disciplines.5 The widest scope of applications are from the biomedical field including exogenous gene/drug delivery systems, advanced biosensors, targeted contrast agents for diagnostic applications and as direct therapeutic agents used in combination with existing treatment modalities.6–11 This diversity of application is especially evident within cancer research, with a myriad of experimental anticancer strategies currently under investigation.
This review will focus specifically on the potential of metal-based nanoparticles to augment the efficacy of radiotherapy in CaP, a disease where radiotherapy constitutes a major curative treatment modality.12 Furthermore, we will also address the clinical state of the art for CaP radiotherapy and consider how these treatments could be best combined with nanotherapeutics to improve cancer outcomes.
Resumo:
Aerogels containing palladium metal nanoparticles were prepared using an ionic liquid route and tested for activity towards hydrogenation and Heck C-C coupling reactions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A one-pot sol-gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt50Sn50 and Pt90Sn10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt90Sn10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu5Sn nanoparticles supported by impregnation onto mesoporous silica films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Modifying the surfaces of metal nanoparticles with self-assembled monolayers of functionalized thiols provides a simple and direct method to alter their surface properties. Mixed self-assembled monolayers can extend this approach since, in principle, the surfaces can be tuned by altering the proportion of each modifier that is adsorbed. However, this works best if the composition and microstructure of the monolayers can be controlled. Here, we have modified preprepared silver colloids with binary mixtures of thiols at varying concentrations and modifier ratios. Surface-enhanced Raman spectroscopy was then used to determine the effect of altering these parameters on the composition of the resulting mixed monolayers. The data could be explained using a new model based on a modified competitive Langmuir approach. It was found that the composition of the mixed monolayer only reflected the ratio of modifiers in the feedstock when the total amount of modifier was sufficient for approximately one monolayer coverage. At higher modifier concentrations the thermodynamically favored modifier dominated, but working at near monolayer concentrations allowed the surface composition to be controlled by changing the ratios of modifiers. Finally, a positively charged porphyrin probe molecule was used to investigate the microstructure of the mixed monolayers, i.e., homogeneous versus domains. In this case the modifier domains were found to be <2 nm.
Resumo:
Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.
Resumo:
Herein, we present a facile method for the formation of monodispersed metal nanoparticles (NPs) at room temperature from M(III)Cl3 (with M = Au, Ru, Mn, Fe or V) in different media based on N,N-dimethylformamide (DMF) or water solutions containing a protic ionic liquid (PIL), namely the octylammonium formate (denoted OAF) or the bis(2-ethyl-hexyl)ammonium formate (denoted BEHAF). These two PILs present different structures and redox-active structuring properties that influence their interactions with selected molecular compounds (DMF or water), as well as the shape and the size of formed metal NPs in these solutions. Herein, the physical properties, such as the thermal, transport and micellar properties, of investigated PIL solutions were firstly investigated in order to understand the relation between PILs structure and their properties in solutions with DMF or water. The formation of metal NPs in these solutions was then characterized by using UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements. From our investigations, it appears that the PILs structure and their aggregation pathways in selected solvents affect strongly the formation, growths, the shape and the size of metal NPs. In fact by using this approach, the shape-/size-controlled metal NPs can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.
Resumo:
Catalyst deactivation is ultimately inevitable, and one of the processes known to cause deactivation is sintering of metal particles. Consequently, numerous methods to reverse the sintering process by redispersing metal nanoparticles have been developed. These methods are discussed in this perspective, and the reported mechanisms of redispersion are summarized. Additionally, the longer-term practical use of such treatments and the benefits this can bring are briefly disclosed.
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.