118 resultados para Nerve-terminals

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acetaminophen [N-acetyl-p-aminophenol (APAP)] is the most common antipyretic/analgesic medicine worldwide. If APAP is overdosed, its metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), causes liver damage. However, epidemiological evidence has associated previous use of therapeutic APAP doses with the risk of chronic obstructive pulmonary disease (COPD) and asthma. The transient receptor potential ankyrin-1 (TRPA1) channel is expressed by peptidergic primary sensory neurons. Because NAPQI, like other TRPA1 activators, is an electrophilic molecule, we hypothesized that APAP, via NAPQI, stimulates TRPA1, thus causing airway neurogenic inflammation. NAPQI selectively excites human recombinant and native (neuroblastoma cells) TRPA1. TRPA1 activation by NAPQI releases proinflammatory neuropeptides (substance P and calcitonin gene-related peptide) from sensory nerve terminals in rodent airways, thereby causing neurogenic edema and neutrophilia. Single or repeated administration of therapeutic (15-60 mg/kg) APAP doses to mice produces detectable levels of NAPQI in the lung, and increases neutrophil numbers, myeloperoxidase activity, and cytokine and chemokine levels in the airways or skin. Inflammatory responses evoked by NAPQI and APAP are abated by TRPA1 antagonism or are absent in TRPA1-deficient mice. This novel pathway, distinguished from the tissue-damaging effect of NAPQI, may contribute to the risk of COPD and asthma associated with therapeutic APAP use.-Nassini, R., Materazzi, S., Andre, E., Sartiani, L., Aldini, G., Trevisani, M., Carnini, C., Massi, D., Pedretti, P., Carini, M., Cerbai, E., Preti, D., Villetti, G., Civelli, M., Trevisan, G., Azzari, C., Stokesberry, S., Sadofsky, L., McGarvey, L., Patacchini, R., Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904-4916 (2010). www.fasebj.org

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The localization and distribution of SALMFamide (S1)-like immunoreactivity (IR), was determined at both the cellular and subcellular level in the central nervous system (CNS) of the nematode roundworm Ascaris suum. The techniques of indirect immunofluorescence in conjunction with confocal scanning laser microscopy and post-embedding, IgG-conjugated colloidal gold immunostaining were used, respectively. Immunostaining was widespread in the CNS of adult A. suum, with immunoreactivity (IR) being localized in nerve cells and fibres in the ganglia associated with the anterior nerve ring and in the main nerve cords and their commissures. At the subcellular level, gold labeling of peptide was localized exclusively over dense-cored vesicles within nerve cell bodies, nerve axons and nerve terminals of the neuropile of the anterior nerve ring, main ganglia and nerve cords in the CNS. Double-labeling demonstrated an apparent co-localization of S1- and FMRFamide-IR-together IR-together with S1- and pancreatic polypeptide (PP)-IR in the same dense-cored vesicles. Antigen preabsorption experiments indicated little cross-reactivity, if any, between the three antisera; indeed, neither FMRFamide nor PP antigens abolished S1 immunostaining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A post-embedding immunogold technique has been used to examine the subcellular distribution of immunoreactivities to vertebrate pancreatic polypeptide (PP) and to the invertebrate peptide, FMRFamide within the central nervous system (CNS) of the nematode, Ascaris suum. Gold labelling of peptide was localized exclusively over dense-cored vesicles within nerve cell bodies, nerve axons and nerve terminals of the main ganglia and nerve cords in the CNS. Double-labelling of peptides demonstrated an apparent co-localization of PP and FMRFamide immunoreactivities in the same dense-cored vesicles, although populations of dense-cored vesicles that labelled solely for FMRFamide were also evident. Antigen preabsorption studies indicated little or no cross-reactivity between the two antisera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP-2-binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin-coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity-dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin-coated intermediates formed during synaptic vesicle recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.