7 resultados para Nano-structured catalyst
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The magnetic anisotropies of a patterned, exchange biased Fe50Mn50/Ni80Fe20 system are studied using ferromagnetic resonance, supplemented by Brillouin light scattering experiments and Kerr magnetometry. The exchange biased bi-layer is partially etched into an antidot geometry so that the system approximates a Ni80 Fe20 layer in contact with antidot structured Fe50 Mn50 . Brillouin light scattering measurements of the spin wave frequency dependence on the wave vector reveal a magnonic band gap as expected for a periodic modulation of the magnetic properties. Analysis of the ferromagnetic resonance spectra reveals 8-fold and 4-fold contributions to the magnetic anisotropy. Additionally, the antidot patterning decreases the magnitude of the exchange bias and modifies strongly its angular dependence. Softening of all resonance modes is most pronounced for the applied magnetic field aligned within 10◦ of the antidot axis, in the direction of the bias. Given the degree to which one can tailor the ground state, the resulting asymmetry at low frequencies could make this an interesting candidate for applications such as selective/directional microwave filtering and multi-state magnetic logic.
Resumo:
We employed a multitechnique approach using piezo-force response microscopy and photoemission microscopy to investigate a self-organizing polarization domain pattern in PbTiO3/La0.7Sr0.3MnO3 (PTO/LSMO) nanostructures. The polarization is correlated with the nanostructure morphology as well as with the thickness and Mn valence of the LSMO template layer. On the LSMO dots, the PTO is upwards polarized, whereas outside the nanodots, the polarization appears both strain and interface roughness dependent. The results suggest that the electronic structure and strain of the PTO/LSMO interface contribute to determining the internal bias of the ferroelectric layer.
Resumo:
Ag/gamma-Al2O3 catalysts have been characterized in-depth during different thermo-chemical treatments by in situ diffuse reflectance UV-visible spectroscopy and quasi in situ Transmission Electron Microscopy. The combination of these techniques indicates that sintering and redispersion of silver is clearly observed from the increases and decreases in the absorption band intensity over the range of 250-600 nm due to the presence of silver clusters and silver nanoparticles. These results allow us to study the effect of the reaction feed on the metal dispersion at different operation conditions and discuss the formation of active sites during the selective catalytic reduction of O-2 with excess H-2 in the presence of unsaturated hydrocarbons. In this case high catalytic activity and selectivity toward the oxygen removal was achieved for this catalyst. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The kinetics of hydrodeoxygenation of waste cooking oil (WCO) is investigated with unsupported CoMoS catalysts. A kinetic model is established and a comprehensive analysis of each reaction pathway is carried out. The results show that hydrodecarbonylation/decarboxylation (HDC) routes are the predominant reaction pathways in the elimination of oxygen, with the rate constant three times as high as that of hydrodeoxygenation (HDO). However, the HDC activity of the CoMoS catalyst deactivates due to gradual loss of sulfur from the catalyst. HDO process is insensitive to the sulfur deficiency. The kinetic modeling shows that direct hydrodecarbonylation of fatty acids dominates the HDC routes and, in the HDO route, fatty acids are transferred to aldehydes/alcohols and then to C-18 hydrocarbons, a final product, and the reduction of acids is the rate limiting step. The HDO route via alcohols is dominant over aldehydes due to a significantly higher reaction rate constant. The difference of C-18/C-17 ratio in unsupported and supported catalysts show that a support with Lewis acid sites may play an important role in the selectivity for the hydrodeoxygenation pathways and promoting the final product quality
Resumo:
Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.