167 resultados para Nanling region

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid ß-peptide may play an important role in this interaction. Aß destabilizes brain membranes and this action of Aß may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Aß1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Aß significantly increased (P 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Aß had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Aß by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Aß can act as a seed for fibrillogenesis in the presence of cholesterol.