4 resultados para NITROGEN FIXATION

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton biomass and rate of production were measured along a transect from 57.54 degreesN to 37.01 degreesN in the northeast Atlantic during July 1996 and at a series of stations over a 7-day period at 37 degreesN 20 degreesW. Surface nutrient concentrations ranged from 4 mu mol l(-1) NO3-, and 0.35 mu mol l(-1) PO43- at 57.54 degreesN to <10 nmol l(-1) NO3- and similar to 10 nmol l(-1) PO43- at 37.01 degreesN. The greatest phytoplankton biomass and production were measured in the vicinity of a frontal system at 50 degreesN, and there was a general decline in total phytoplankton biomass and production to the south of the transect. Production was measured in three size fractions. At the station with the highest chlorophyll concentrations (50.34 degreesN), phytoplankton cells larger than 5 mum dominated the assemblage, accounting for 72% of the chlorophyll concentration (22.9 mg m(-2)) and 51% of primary production (54.1 mmol Cm-2 d(-1)), but picophytoplankton production was also high (43%). At 57 degreesN, carbon fixation by the > 5 mum fraction accounted for 75% of the daily production of 60.75 mmol Cm-2 d(-1). At 37 degreesN, picophytoplankton was the dominant group, accounting for similar to 58% (10 mg m(-2)) of chlorophyll and similar to 64% (46 mmol Cm-2 d(-1)), of primary production. Nitrate, ammonium and phosphate uptake rates also were determined. Although high nitrate uptake rates were measured in the surface water at similar to 50 degreesN, the greatest uptake rates of both depth-integrated nitrate and ammonium were at the south of the transect. At 37 degreesN, a deep euphotic zone was present and light penetrated through the nitracline; total nitrate uptake was enhanced because of assimilation at the base of the euphotic zone. As a consequence, high values of depth-integrated f-ratio were measured in the oligotrophic waters at the south of the transect. Phosphate was predominantly incorporated into the picoplankton fraction, which included heterotrophic and autotrophic components, at all stations and a significant proportion of phosphate uptake occurred in the dark. The C:N:P assimilation ratios were variable throughout the region; phosphate uptake was generally greater than would be expected if nutrient assimilation were in proportion to the Redfield ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.