2 resultados para NANNOCHLOROPSIS-OCULATA

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of a hydrated phosphonium ionic liquid, [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl, for the extraction of microalgæ lipids for biodiesel production, was evaluated using two microalgæ species, Chlorella vulgaris and Nannochloropsis oculata. The ionic liquid extraction was compared to the conventional Soxhlet, and Bligh & Dyer, methods, giving the highest extraction efficiency in the case of C. vulgaris, at 8.1%. The extraction from N. oculata achieved the highest lipid yield for Bligh & Dyer (17.3%), while the ionic liquid extracted 12.8%. Nevertheless, the ionic liquid extraction showed high affinity to neutral/saponifiable lipids, resulting in the highest fatty acid methyl esters (FAMEs)-biodiesel yield (4.5%) for C. vulgaris. For N. oculata, the FAMEs yield of the ionic liquid and Bligh & Dyer extraction methods were similar (>8%), and much higher than for Soxhlet (<5%). The ionic liquid extraction proved especially suitable for lipid extraction from wet biomass, giving even higher extraction yields than from dry biomass, 14.9% and 12.8%, respectively (N. oculata). Remarkably, the overall yield of FAMEs was almost unchanged, 8.1% and 8.0%, for dry and wet biomass. The ionic liquid extraction process was also studied at ambient temperature, varying the extraction time, giving 75% of lipid and 93% of FAMEs recovery after thirty minutes, as compared to the extraction at 100 °C for one day. The recyclability study demonstrated that the ionic liquid was unchanged after treatment, and was successfully reused. The ionic liquid used is best described as [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl·2H<inf>2</inf>O, where the water is not free, but strongly bound to the ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fisheries can have profound effects on epifaunal community function and structure. We analysed the results from five dive surveys (1975–1976, 1980, 1983, 2003 and 2007), taken in a Special Area of Conservation, Strangford Lough, Northern Ireland before and after a ten year period of increased trawling activity between 1985 and 1995. There were no detectable differences in the species richness or taxonomic distinctiveness before (1975–1983) and after (2003–2007) this period. However, there was a shift in the epifaunal assemblage between the surveys in 1975–1983 and 2003–2007. In general, the slow-moving, or sessile, erect, filterfeeders were replaced by highly mobile, swimming, scavengers and predators. There were declines in the frequency of the fished bivalve Aequipecten opercularis and the non-fished bivalves Modiolus modiolus and Chlamys varia and some erect sessile invertebrates between the surveys in 1975–1983 and 2003–2007. In contrast, there were increases in the frequency of the fished and reseeded bivalves Pecten maximus and Ostrea edulis, the fished crabs Cancer pagurus and Necora puber and the non-fished sea stars Asterias rubens, Crossaster papposus and Henricia oculata between the surveys in 1975–1983 and 2003–2007. We suggest that these shifts could be directly and indirectly attributed to the long-termimpacts of trawl fishing gear, although increases in the supply of discarded bait and influxes of sediment may also have contributed to changes in the frequency of some taxa. These results suggest that despite their limitations, historical surveys and repeat sampling over long periods can help to elucidate the inferred patterns in the epifaunal community. The use of commercial fishing gear was banned from two areas in Strangford Lough in 2011, making it a model ecosystem for assessing the long-term recovery of the epifaunal community from the impacts of mobile and pot fishing gear.