103 resultados para N -Soliton Solution

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reductive perturbation technique is employed to investigate the modulational instability of dust-acoustic (DA) waves propagating in a four-component dusty plasma. The dusty plasma consists of both positive- and negative-charge dust grains, characterized by a different mass, temperature and density, in addition to a background of Maxwellian electrons and ions. Relying on a multi-fluid plasma model and employing a multiple scales technique, a nonlinear Schrodinger type equation (NLSE) is obtained for the electric potential amplitude perturbation. The occurrence of localized electrostatic wavepackets is shown, in the form of oscillating structures whose modulated envelope is modelled as a soliton (or multi-soliton) solution of the NLSE. The DA wave characteristics, as well as the associated stability thresholds, are studied analytically and numerically. The relevance of these theoretical results with dusty plasmas observed in cosmic and laboratory environments is analysed in detail, by considering realistic multi-component plasma configurations observed in the polar mesosphere, as well as in laboratory experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear properties of small amplitude electron-acoustic solitary waves (EAWs) in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. At the critical ion density, the KP equation is not appropriate for describing the system. Hence, a new set of stretched coordinates
is considered to derive the modified KP equation. Moreover, the solitary solution, soliton energy and the associated electric field at the critical ion density were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments, such as Earth’s magnetotail region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXAFS has been used to directly show the existence of Au…Au interactions in dissolved Au(I) complexes for the first time; the information has been used to understand the optical properties of these materials.