67 resultados para Myelodysplastic syndromes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that increased intramedullary apoptosis may explain the paradox between peripheral blood cytopenias and the hyper- or normo-cellular bone marrow observed in the myelodysplastic syndromes (MDS). We wished to see if culture performance could be related to the presence of apoptotic cells in a group of patients with MDS (12 patients) and other patients with peripheral blood cytopenias (six patients) which caused diagnostic difficulty. There was no correlation between LTBMC or adherent cell growth and the presence of apoptotic cells in the original marrow sample. A variable degree of apoptosis was observed in both groups of patients. LTBMC profiles correlated well with diagnosis but were unrelated to the extent of intramedullary apoptosis. This suggests that apoptosis is a much more ubiquitous process in disease than previously thought. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of MN1, ERG, BAALC, and EVI1 (MEBE) genes in cytogenetically normal acute myeloid leukemia (AML) patients is associated with poor prognosis, but their prognostic effect in patients with myelodysplastic syndromes (MDS) has not been studied systematically. Expression data of the four genes from 140 MDS patients were combined in an additive score, which was validated in an independent patient cohort of 110 MDS patients. A high MEBE score, defined as high expression of at least two of the four genes, predicted a significantly shorter overall survival (OS) (HR 2.29, 95 % CI 1.3-4.09, P?=?.005) and time to AML progression (HR 4.83, 95 % CI 2.01-11.57, P?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis of patients with myelodysplastic syndromes (MDS) is largely dependent on morphologic examination of bone marrow aspirates. Several criteria that form the basis of the classifications and scoring systems most commonly used in clinical practice are affected by operator-dependent variation. To identify standardized molecular markers that would allow prediction of prognosis, we have used gene expression profiling (GEP) data on CD34+ cells from patients with MDS to determine the relationship between gene expression levels and prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.Leukemia advance online publication, 17 June 2016; doi:10.1038/leu.2016.149.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The acute myeloid leukaemia (AML)14 trial addressed four therapeutic questions in patients predominantly aged over 60 years with AML and High Risk Myelodysplastic Syndrome: (i) Daunorubicin 50 mg/m(2) vs. 35 mg/m(2); (ii) Cytarabine 200 mg/m(2) vs. 400 mg/m(2) in two courses of DA induction; (iii) for part of the trial, patients allocated Daunorubicin 35 mg/m(2) were also randomized to receive, or not, the multidrug resistance modulator PSC-833 in a 1:1:1 randomization; and (iv) a total of three versus four courses of treatment. A total of 1273 patients were recruited. The response rate was 62% (complete remission 54%, complete remission without platelet/neutrophil recovery 8%); 5-year survival was 12%. No benefits were observed in either dose escalation randomization, or from a fourth course of treatment. There was a trend for inferior response in the PSC-833 arm due to deaths in induction. Multivariable analysis identified cytogenetics, presenting white blood count, age and secondary disease as the main predictors of outcome. Although patients with high Pgp expression and function had worse response and survival, this was not an independent prognostic factor, and was not modified by PSC-833. In conclusion, these four interventions have not improved outcomes in older patients. New agents need to be explored and novel trial designs are required to maximise prospects of achieving timely progress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic myelomonocytic leukemia is similar to but a separate entity from both myeloproliferative neoplasms and myelodysplastic syndromes, and shows either myeloproliferative or myelodysplastic features. We ask whether this distinction may have a molecular basis. We established the gene expression profiles of 39 samples of chronic myelomonocytic leukemia (including 12 CD34-positive) and 32 CD34-positive samples of myelodysplastic syndromes by using Affymetrix microarrays, and studied the status of 18 genes by Sanger sequencing and array-comparative genomic hybridization in 53 samples. Analysis of 12 mRNAS from chronic myelomonocytic leukemia established a gene expression signature of 122 probe sets differentially expressed between proliferative and dysplastic cases of chronic myelomonocytic leukemia. As compared to proliferative cases, dysplastic cases over-expressed genes involved in red blood cell biology. When applied to 32 myelodysplastic syndromes, this gene expression signature was able to discriminate refractory anemias with ring sideroblasts from refractory anemias with excess of blasts. By comparing mRNAS from these two forms of myelodysplastic syndromes we derived a second gene expression signature. This signature separated the myelodysplastic and myeloproliferative forms of chronic myelomonocytic leukemias. These results were validated using two independent gene expression data sets. We found that myelodysplastic chronic myelomonocytic leukemias are characterized by mutations in transcription/epigenetic regulators (ASXL1, RUNX1, TET2) and splicing genes (SRSF2) and the absence of mutations in signaling genes. Myelodysplastic chronic myelomonocytic leukemias and refractory anemias with ring sideroblasts share a common expression program suggesting they are part of a continuum, which is not totally explained by their similar but not, however, identical mutation spectrum. © 2013 Ferrata Storti Foundation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients. Leukemia (2011) 25, 909-920; doi:10.1038/leu.2011.48; published online 29 March 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method was devised to grow haemopoietic cells in long-term bone marrow culture (LTBMC) which requires only 1 x 10(6) cells/culture. Such miniature cultures were used to study growth patterns of marrow from patients with myelodysplastic syndromes (MDS). Consistent differences in LTBMC cellularity and cellular composition were noted between MDS and normal marrow. These differences were accentuated by rGM-CSF. The criteria which distinguished between and MDS marrows were: cell count at weeks 1 and 4, % neutrophils and % blasts. In 10 patients with unexplained macrocytosis or pancytopenia miniature LTBMC results clearly segregated into either 'normal' or 'MDS' growth patterns. Miniature LTBMC with rGM-CSF may therefore be a useful diagnostic test for early MDS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research over the past decade has confirmed that epigenetic alterations act in concert with genetic lesions to deregulate gene expression in acute myeloid leukemia and myelodysplastic syndromes. In addition, we now have the capability to pharmaceutically target epigenetic modifications, and there is an urgent need forearly validation of the efficacy of the drugs. Also, an improved understanding of the functionality of epigenetic modifications may further pave the road towards an individualized therapy. Here, we provide the pros and cons of the currently most feasible methods used for characterizing the methylome in clinical samples, and give a brief introduction to novel approaches to sequencing that may revolutionize our abilities to characterize the genomes and epigenomes in acute myeloid leukemia and myelodysplastic syndrome patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).

Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).

Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.

Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.