270 resultados para Muscle atrophy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) is an auto inflammatory syndrome caused by an autosomal recessive gene mutation. This very rare syndrome has been reported in only 14 patients worldwide. A number of clinical signs have been reported including joint contractures, muscle atrophy, microcytic anaemia, and panniculitis-induced childhood lipodystrophy. Further symptoms include recurrent fevers, purpuric skin lesions, periorbital erythema and failure to thrive. This is the first reported case of periodontal manifestations associated with CANDLE syndrome. 
Case Presentation: An 11 year old boy was referred to Cork University Dental School and Hospital with evidence of severe periodontal destruction. The patient’s medical condition was managed in Great Ormond Street Children’s Hospital, London. The patient’s dental management included initial treatment to remove teeth of hopeless prognosis followed by prosthodontic rehabilitation using removable partial dentures. This was followed by further non-surgical periodontal treatment and maintenance. In the long term, the potential definitive restorative options, including dental implants, will be evaluated in discussion with the patient’s medical team.
Conclusion: Periodontitis as a manifestation of systemic disease is one of seven categories of periodontitis as defined by the American Academy of Periodontology 1999 classification system. A number of systemic diseases have been associated with advanced periodontal destruction including Diabetes Mellitus, Leukaemia and Papillon-Lefevre Syndrome. In the case described, treatment necessitated a multidisciplinary approach with input from medical and dental specialities for a young patient with severe periodontal destruction associated with CANDLE syndrome.