7 resultados para Multiple intelligence
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Recently, several belief negotiation models have been introduced to deal with the problem of belief merging. A negotiation model usually consists of two functions: a negotiation function and a weakening function. A negotiation function is defined to choose the weakest sources and these sources will weaken their point of view using a weakening function. However, the currently available belief negotiation models are based on classical logic, which makes them difficult to define weakening functions. In this paper, we define a prioritized belief negotiation model in the framework of possibilistic logic. The priority between formulae provides us with important information to decide which beliefs should be discarded. The problem of merging uncertain information from different sources is then solved by two steps. First, beliefs in the original knowledge bases will be weakened to resolve inconsistencies among them. This step is based on a prioritized belief negotiation model. Second, the knowledge bases obtained by the first step are combined using a conjunctive operator which may have a reinforcement effect in possibilistic logic.
Resumo:
In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)
Resumo:
We present a practical approach to Natural Language Generation (NLG) for spoken dialogue systems. The approach is based on small template fragments (mini-templates). The system’s object architecture facilitates generation of phrases across pre-defined business domains and registers, as well as into different languages. The architecture simplifies NLG in well-understood application contexts, while providing the flexibility for a developer and for the system, to vary linguistic output according to dialogue context, including any intended affective impact. Mini-templates are used with a suite of domain term objects, resulting in an NLG system (MINTGEN – MINi-Template GENerator) whose extensibility and ease of maintenance is enhanced by the sparsity of information devoted to individual domains. The system also avoids the need for specialist linguistic competence on the part of the system maintainer.
Resumo:
Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78-0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1-6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI. © Springer-Verlag London Limited 2008.
Resumo:
We describe a lightweight prototype framework (LIBERO) designed for experimentation with behavioural skeletons-components implementing a well-known parallelism exploitation pattern and a rule-based autonomic manager taking care of some non-functional feature related to pattern computation. LIBERO supports multiple autonomic managers within the same behavioural skeleton, each taking care of a different non-functional concern. We introduce LIBERO-built on plain Java and JBoss-and discuss how multiple managers may be coordinated to achieve a common goal using a two-phase coordination protocol developed in earlier work. We present experimental results that demonstrate how the prototype may be used to investigate autonomic management of multiple, independent concerns. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
When implementing autonomic management of multiple non-functional concerns a trade-off must be found between the ability to develop independently management of the individual concerns (following the separation of concerns principle) and the detection and resolution of conflicts that may arise when combining the independently developed management code. Here we discuss strategies to establish this trade-off and introduce a model checking based methodology aimed at simplifying the discovery and handling of conflicts arising from deployment-within the same parallel application-of independently developed management policies. Preliminary results are shown demonstrating the feasibility of the approach.