41 resultados para Multi-Higgs models
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Background: Implementing effective antenatal care models is a key global policy goal. However, the mechanisms of action of these multi-faceted models that would allow widespread implementation are seldom examined and poorly understood. In existing care model analyses there is little distinction between what is done, how it is done, and who does it. A new evidence-informed quality maternal and newborn care (QMNC) framework identifies key characteristics of quality care. This offers the opportunity to identify systematically the characteristics of care delivery that may be generalizable across contexts, thereby enhancing implementation. Our objective was to map the characteristics of antenatal care models tested in Randomised Controlled Trials (RCTs) to a new evidence-based framework for quality maternal and newborn care; thus facilitating the identification of characteristics of effective care.
Methods: A systematic review of RCTs of midwifery-led antenatal care models. Mapping and evaluation of these models’ characteristics to the QMNC framework using data extraction and scoring forms derived from the five framework components. Paired team members independently extracted data and conducted quality assessment using the QMNC framework and standard RCT criteria.
Results: From 13,050 citations initially retrieved we identified 17 RCTs of midwifery-led antenatal care models from Australia (7), the UK (4), China (2), and Sweden, Ireland, Mexico and Canada (1 each). QMNC framework scores ranged from 9 to 25 (possible range 0–32), with most models reporting fewer than half the characteristics associated with quality maternity care. Description of care model characteristics was lacking in many studies, but was better reported for the intervention arms. Organisation of care was the best-described component. Underlying values and philosophy of care were poorly reported.
Conclusions: The QMNC framework facilitates assessment of the characteristics of antenatal care models. It is vital to understand all the characteristics of multi-faceted interventions such as care models; not only what is done but why it is done, by whom, and how this differed from the standard care package. By applying the QMNC framework we have established a foundation for future reports of intervention studies so that the characteristics of individual models can be evaluated, and the impact of any differences appraised.
Resumo:
Goldstone's idea of slow dynamics resulting from spontaneously broken symmetries is applied to Hubbell's neutral hypothesis of community dynamics, to efficiently simplify stage-structured multi-species models-introducing the quasi-neutral approximation (QNA). Rather than assuming population-dynamical neutrality in the QNA, deviations from ideal neutrality, thought to be small, drive dynamics. The QNA is systematically derived to first and second order in a two-scale singular perturbation expansion. The total reproductive value of species, as computed from the effective life-history parameters resulting from the non-linear interactions with the surrounding community, emerges as the new dynamic variables in this aggregated description. Using a simple stage-structured community-assembly model, the QNA is demonstrated to accurately reproduce population dynamics in large, complex communities. Further, the utility of the QNA in building intuition for management problems is illustrated by estimating the responses of a fish stock to harvesting and variations in fecundity.
Resumo:
Cross sections for the multi-ionization of He and Li are presented for impact energies in the range of 50 to 1000 keV/amu. These are calculated using the eikonal initial state approximation to represent the input and exit channels of the active electrons. The ionization process is simulated in a variety of ways, most notably an attempt to account for the effects of electron correlation via the inclusion of a continuum density of states (CDS) term. Inadequacies, of the CDW formulation at small impact parameters, and of the models themselves, are discussed and conclusions are drawn on what repercussions this has for the cross sections calculated.
Resumo:
Concern with what can explain variation in generalized social trust has led to an abundance of theoretical models. Defining generalized social trust as a belief in human benevolence, we focus on the emancipation theory and social capital theory as well as the ethnic diversity and economic development models of trust. We then determine which dimensions of individuals’ behavior and attitudes as well as of their national context are the most important predictors. Using data from 20 countries that participated in round one of the European Social Survey, we test these models at their respective level of analysis, individual and/or national. Our analysis revealed that individuals’ own trust in the political system as a moral and competent institution was the most important predictor of generalized social trust at the individual level, while a country’s level of affluence was the most important contextual predictor, indicating that different dimensions are significant at the two levels of analysis. This analysis also raised further questions as to the meaning of social capital at the two levels of analysis and the conceptual equivalence of its civic engagement dimension across cultures.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
This paper presents a scalable, statistical ‘black-box’ model for predicting the performance of parallel programs on multi-core non-uniform memory access (NUMA) systems. We derive a model with low overhead, by reducing data collection and model training time. The model can accurately predict the behaviour of parallel applications in response to changes in their concurrency, thread layout on NUMA nodes, and core voltage and frequency. We present a framework that applies the model to achieve significant energy and energy-delay-square (ED2) savings (9% and 25%, respectively) along with performance improvement (10% mean) on an actual 16-core NUMA system running realistic application workloads. Our prediction model proves substantially more accurate than previous efforts.
Resumo:
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the ‘perturbations-aided neutrino-driven mechanism,’ whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
Resumo:
Abstract Adaptability to changing circumstances is a key feature of living creatures. Understanding such adaptive processes is central to developing successful autonomous artifacts. In this paper two perspectives are brought to bear on the issue of adaptability. The first is a short term perspective which looks at adaptability in terms of the interactions between the agent and the environment. The second perspective involves a hierarchical evolutionary model which seeks to identify higher-order forms of adaptability based on the concept of adaptive meta-constructs. Task orientated and agent-centered models of adaptive processes in artifacts are considered from these two perspectives. The former isrepresented by the fitness function approach found in evolutionary learning, and the latter in terms of the concepts of empowerment and homeokinesis found in models derived from the self-organizing systems approach. A meta-construct approach to adaptability based on the identification of higher level meta-metrics is also outlined. 2009 Published by Elsevier B.V.
Resumo:
PURPOSE The appropriate selection of patients for early clinical trials presents a major challenge. Previous analyses focusing on this problem were limited by small size and by interpractice heterogeneity. This study aims to define prognostic factors to guide risk-benefit assessments by using a large patient database from multiple phase I trials. PATIENTS AND METHODS Data were collected from 2,182 eligible patients treated in phase I trials between 2005 and 2007 in 14 European institutions. We derived and validated independent prognostic factors for 90-day mortality by using multivariate logistic regression analysis. Results The 90-day mortality was 16.5% with a drug-related death rate of 0.4%. Trial discontinuation within 3 weeks occurred in 14% of patients primarily because of disease progression. Eight different prognostic variables for 90-day mortality were validated: performance status (PS), albumin, lactate dehydrogenase, alkaline phosphatase, number of metastatic sites, clinical tumor growth rate, lymphocytes, and WBC. Two different models of prognostic scores for 90-day mortality were generated by using these factors, including or excluding PS; both achieved specificities of more than 85% and sensitivities of approximately 50% when using a score cutoff of 5 or higher. These models were not superior to the previously published Royal Marsden Hospital score in their ability to predict 90-day mortality. CONCLUSION Patient selection using any of these prognostic scores will reduce non-drug-related 90-day mortality among patients enrolled in phase I trials by 50%. However, this can be achieved only by an overall reduction in recruitment to phase I studies of 20%, more than half of whom would in fact have survived beyond 90 days.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.
Resumo:
Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.