4 resultados para Mobile Device
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Practical demonstration of the operational advantages gained through the use of a co-operating retrodirective array (RDA) basestation and Van Atta node arrangements is discussed. The system exploits a number of inherent RDA features to provide analogue real time multifunctional operation at low physical complexity. An active dual-conversion four element RDA is used as the power distribution source (basestation) while simultaneously achieving a receive sensitivity level of ??109 dBm and 3 dB automatic beam steering angle of ??45??. When mobile units are each equipped with a semi-passive four element Van Atta array, it is shown mobile device orientation issues are mitigated and optimal energy transfer can occur because of automatic beam formation resulting from retrodirective self-pointing action. We show that operation in multipath rich environments with or without line of sight acts to reduce average power density limits in the operating volume with high energy density occurring at mobile nodes sites only. The system described can be used as a full duplex ASK communications link, or, as a means for remote node charging by wireless means, thereby enhancing deployment opportunities between unstabilised moving platforms.
Energy-Aware Rate and Description Allocation Optimized Video Streaming for Mobile D2D Communications
Resumo:
The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.
Resumo:
This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.
Resumo:
In order to protect user privacy on mobile devices, an event-driven implicit authentication scheme is proposed in this paper. Several methods of utilizing the scheme for recognizing legitimate user behavior are investigated. The investigated methods compute an aggregate score and a threshold in real-time to determine the trust level of the current user using real data derived from user interaction with the device. The proposed scheme is designed to: operate completely in the background, require minimal training period, enable high user recognition rate for implicit authentication, and prompt detection of abnormal activity that can be used to trigger explicitly authenticated access control. In this paper, we investigate threshold computation through standard deviation and EWMA (exponentially weighted moving average) based algorithms. The result of extensive experiments on user data collected over a period of several weeks from an Android phone indicates that our proposed approach is feasible and effective for lightweight real-time implicit authentication on mobile smartphones.