17 resultados para Mixed species
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.
Resumo:
We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.
Resumo:
In a laboratory experiment that permitted both observations of the behaviour of individuals and the monitoring of small populations, the role of 'intraguild predation' in the elimination of the freshwater amphipod Gammarus duebeni celticus by the introduced G. pulex was examined. Over 18 weeks, deaths in single and mixed species replicates were monitored. Rates of 'mortality' (deaths not due to cannibalism or predation) did not differ between the species. Gammarus cl. celticus, however, was more cannibalistic than G. pulex and, in both species, males were more often cannibalized than females. In mixed species replicates, the mean proportions of animals preyed upon did not differ among replicates with differing starting proportions of the two species, nor was there a difference between the sexes in numbers preyed upon. G. pulex, however, preyed more frequently on G. d celticus than vice versa, and this became more pronounced over time. In 87% of mixed species replicates, G. pulex eliminated G. d. celticus. The results support the proposition that intraguild predation may be the primary mechanism whereby G. pulex rapidly replaces G. d. celticus in freshwater. Integrating behavioural observations with population level monitoring may thus link pattern and process in behaviour and ecology.
Resumo:
Recent landmark experiments have demonstrated how quantum mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems. Here we present a theoretical model to simulate such an output coupler for a Tonks- Girardeau gas that shows excellent agreement with the experimental results for atom transport and output coupling. The solid theoretical basis our model provides allows us to explore non-equilibrium transport phenomena in ultra-cold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localised in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.
Resumo:
The development and implementation of a population supplementation and restoration plan for any endangered species should involve an understanding of the species’ habitat requirements prior to the release of any captive bred individuals. The freshwater pearl mussel, Margaritifera margaritifera, has undergone dramatic declines over the last century and is now globally endangered. In Northern Ireland, the release of captive bred individuals is being used to support wild populations and repatriate the species in areas where it once existed. We employed a combination of maximum entropy modelling (MAXENT) and Generalized Linear Mixed Models (GLMM) to identify ecological parameters necessary to support wild populations using GIS-based landscape scale and ground-truthed habitat scale environmental parameters. The GIS-based landscape scale model suggested that mussel occurrence was associated with altitude and soil characteristics including the carbon, clay, sand, and silt content. Notably, mussels were associated with a relatively narrow band of variance indicating that M. margaritifera has a highly specific landscape niche. The ground-truthed habitat scale model suggested that mussel occurrence was associated with stable consolidated substrates, the extent of bankside trees, presence of indicative macrophyte species and fast flowing water. We propose a three phase conservation strategy for M. margaritifera identifying suitable areas within rivers that (i) have a high conservation value yet needing habitat restoration at a local level, (ii) sites for population supplementation of existing populations and (iii) sites for species reintroduction to rivers where the mussel historically occurred but is now locally extinct. A combined analytical approach including GIS-based landscape scale and ground-truthed habitat scale models provides a robust method by which suitable release sites can be identified for the population supplementation and restoration of an endangered species. Our results will be highly influential in the future management of M. margaritifera in Northern Ireland.
Resumo:
Jellyfish (medusae) are sometimes the most noticeable and abundant members of coastal planktonic communities, yet ironically, this high conspicuousness is not reflected in our overall understanding of their spatial distributions across large expanses of water. Here, we set out to elucidate the spatial (and temporal) patterns for five jellyfish species (Phylum Cnidaria, Orders Rhizostomeae and Semaeostomeae) across the Irish & Celtic Seas, an extensive shelf-sea area at Europe's northwesterly margin encompassing several thousand square kilometers. Data were gathered using two independent methods: (1) surface-counts of jellyfish from ships of opportunity, and (2) regular shoreline surveys for stranding events over three consecutive years. Jellyfish species displayed distinct species-specific distributions, with an apparent segregation of some species. Furthermore, a different species composition was noticeable between the northern and southern parts of the study area. Most importantly, our data suggests that jellyfish distributions broadly reflect the major hydrographic regimes (and associated physical discontinuities) of the study area, with mixed water masses possibly acting as a trophic barrier or non-favourable environment for the successful growth and reproduction of jellyfish species.
Resumo:
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
A novel configuration for the in situ control of the catalytic activity of a polycrystalline Pt catalyst supported on a mixed ionic electronic conducting (MIEC) substrate is investigated. The modification of the catalytic activity is achieved by inducing the reverse spillover of oxygen promoting species from the support onto the catalyst surface, thus modifying the chemisorptive bond energy of the gas phase adsorbed reactants. This phenomenon is known as Electrochemical Promotion of Catalysis (EPOC). In this work we investigate the use of a wireless system that takes advantage of the mixed ionic electronic conductivity of the catalyst support (internally short-circuiting the system) in a dual chamber reactor. In this wireless configuration, the reaction takes place in one chamber of the membrane reactor while introduction of the promoting species is achieved by the use of an appropriate sweep gas (and therefore control of the oxygen chemical potential difference across the membrane) on the other chamber. Experimental results have shown that the catalytic rate can be enhanced by using an oxygen sweep, while a hydrogen sweep can reverse the changes. Total rate enhancement ratios of up to 3.5 were measured. © 2008 Elsevier B.V. All rights reserved.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.